タグ「長さ」の検索結果

26ページ目:全1099問中251問~260問を表示)
山口大学 国立 山口大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$上に頂点$\mathrm{B}$,$\mathrm{C}$とは異なる点$\mathrm{P}$をとる.$\mathrm{AB}=l$,$\mathrm{AP}=m$,$\angle \mathrm{PAB}=\alpha$,$\angle \mathrm{PAC}=\beta$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABP}$の面積を$l,\ m,\ \alpha$を用いて表しなさい.
(2)$\mathrm{AC}$の長さおよび$\triangle \mathrm{ABC}$の面積$S$を$l,\ m,\ \alpha,\ \beta$を用いて表しなさい.
(3)次の不等式が成り立つことを示しなさい.
\[ S \geqq \frac{2m^2 \sin \alpha \sin \beta}{\sin (\alpha+\beta)} \]
山口大学 国立 山口大学 2015年 第1問
$p,\ q,\ m$を実数とする.放物線$y=-x^2+2px+q$を$C$とし,その頂点は直線$y=mx-3$上にあるとする.このとき,次の問いに答えなさい.

(1)$q$を$p,\ m$を用いて表しなさい.
(2)$C$の頂点の$x$座標が$-4$のとき,$C$が$x$軸と異なる$2$点で交わるように,$m$の値の範囲を定めなさい.また,そのとき$C$が$x$軸から切り取る線分の長さを$m$を用いて表しなさい.
(3)$p$の値にかかわらず,$C$と$y$軸の共有点の$y$座標が負となるように,$m$の値の範囲を定めなさい.
京都教育大学 国立 京都教育大学 2015年 第2問
次のような,一辺の長さが$1$の正八面体を考える.ただし,$\mathrm{M}$は辺$\mathrm{BC}$の中点である.
(図は省略)

(1)$\cos \angle \mathrm{AMD}$を求めよ.
(2)$\triangle \mathrm{AMD}$の面積を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
関数$\displaystyle f(x)=\frac{x}{\sqrt{1+x^2}}$について,次の問に答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)$t>0$を媒介変数として,$x=f^\prime(t)$,$y=f(t)-tf^\prime(t)$で表される曲線の概形を描け.
(3)$(2)$の曲線の接線が$x$軸と$y$軸によって切り取られてできる線分の長さは一定であることを示せ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$0<\theta _n<1 \ (n=1,\ 2,\ 3,\ \cdots)$となる数列$\{\theta_n\}$を用いて,閉区間$[0,\ 1]$から始めて,以下のようにしていくつかの閉区間を残す操作を繰り返す.ただし,$a<b$とするとき,開区間$(a,\ b)$の長さは閉区間$[a,\ b]$の長さと等しく$b-a$である.

$1$回目の操作では,閉区間$\displaystyle \left[ 0,\ \frac{1-\theta_1}{2} \right]$と$\displaystyle \left[ \frac{1+\theta_1}{2},\ 1 \right]$を残す.残った閉区間の個数を$k_1$,各閉区間の長さを$r_1$とおき,$s_1$を$s_1=k_1r_1$と定める.$k_1=2$,$\displaystyle r_1=\frac{1-\theta_1}{2}$,$s_1=1-\theta_1$である.
$n+1$回目の操作では,$n$回目の操作を終えて残った$k_n$個の長さ$r_n$の各閉区間から長さ$\theta_{n+1}r_n$の閉区間を取り除き,長さの等しい閉区間を$2$個ずつ残す.こうして残った閉区間の個数を$k_{n+1}$,各閉区間の長さを$r_{n+1}$とおき,$s_{n+1}$を$s_{n+1}=k_{n+1}r_{n+1}$と定める.
(1)$\displaystyle \lim_{n \to \infty} r_n=[サ]$である.
(2)$\displaystyle \theta_n=\frac{2}{(n+1)(n+2)} (n=1,\ 2,\ 3,\ \cdots)$のとき,$\displaystyle \lim_{n \to \infty}s_n=[シ]$である.
(3)$0<\theta<1$とし,$\theta_n=\theta (n=1,\ 2,\ 3,\ \cdots)$とする.$n=1,\ 2,\ 3,\ \cdots$に対して,閉区間$[0,\ 1]$を定義域とする連続関数$f_n(x)$と実数$a_n$が次の条件を満たすとする.

\mon[条件:] $f_n(0)=0$で$f_n(1)=1$である.関数$f_n(x)$は,$n$回目までの操作で取り除いた各開区間において微分可能で${f_n}^\prime(x)=0$となり,$n$回目の操作を終えて残った各閉区間から両端を除いた開区間において微分可能で${f_n}^\prime(x)=a_n$となる.

このとき$a_n$を$\theta$と$n$を用いて表すと$a_n=[ス]$となる.関数$y=f_n(x) (0 \leqq x \leqq 1)$のグラフは折れ線になり,その長さを$l_n$とおくと,$\displaystyle \lim_{n \to \infty} l_n=[セ]$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
座標空間内の原点$\mathrm{O}$,$z$座標が正である点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を頂点とする立方体$\mathrm{OP}_1 \mathrm{P}_2 \mathrm{P}_3-\mathrm{P_4}\mathrm{P_5}\mathrm{P_6}\mathrm{P_7}$を考える.点$\mathrm{P}_1$の座標は$(2,\ 5,\ 4)$であり,点$\mathrm{P}_3$は$zx$平面上にあるとする.このとき,点$\mathrm{P}_3$の座標は$[ソ]$,点$\mathrm{P}_4$の座標は$[タ]$,点$\mathrm{P}_6$の座標は$[チ]$である.点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を$xy$平面に下ろした垂線を$\mathrm{P}_k \mathrm{Q}_k$とするとき,四角形$\mathrm{OQ}_1 \mathrm{Q}_2 \mathrm{Q}_3$の面積は$[ツ]$,六角形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_7 \mathrm{Q}_4 \mathrm{Q}_5$の面積は$[テ]$である.また,立方体と$z$軸との交わりは線分となり,その線分の長さは$[ト]$となる.
(図は省略)
早稲田大学 私立 早稲田大学 2015年 第2問
空間内に,一辺の長さ$1$の正四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問に答えよ.

(1)辺$\mathrm{AB}$の中点を$\mathrm{D}$とし,また,辺$\mathrm{OC}$を$k:(1-k)$に内分する点を$\mathrm{E}$とする.ただし,$0<k<1$とする.このとき,$\overrightarrow{\mathrm{DE}}$を,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{DE}}$の大きさ$|\overrightarrow{\mathrm{DE}}|$を$k$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{DE}}$を$k$を用いて表せ.
(4)$\triangle \mathrm{EAB}$の面積$S$を$k$を用いて表せ.さらに,面積$S$を最小にする$k$の値とそのときの面積を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[シ]$に当てはまる数または式を記入せよ.

(1)式$(2x+3y+z)(x+2y+3z)(3x+y+2z)$を展開したときの$xyz$の係数は$[ア]$である.
(2)実数$x,\ y$が$\displaystyle \frac{i}{1+xi}+\frac{x+2}{y+i}=0$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)定積分$\displaystyle \int_{-2}^2 x |x-1| \, dx$を求めると$[エ]$である.
(4)$2^{\frac{1}{2}},\ 3^{\frac{1}{3}},\ 5^{\frac{1}{5}}$の大小関係は$[オ]<[カ]<[キ]$である.
(5)不等式$\displaystyle (\log_2 x)^2+\log_2 \frac{x}{2}<1$を満たす$x$の範囲は$[ク]$である.
(6)半径$1$の円に内接する正$n$角形の周の長さは$[ケ]$である.
(7)座標空間における$3$点$\mathrm{A}(1,\ -1,\ 5)$,$\mathrm{B}(4,\ 5,\ 2)$,$\mathrm{C}(a,\ b,\ 0)$が一直線上にあるとき,$a=[コ]$,$b=[サ]$である.
(8)円$x^2+y^2=1$と直線$y=kx+2 (k>0)$が接するとき,その接点の座標は$[シ]$である.
自治医科大学 私立 自治医科大学 2015年 第8問
$2$つの点$\mathrm{A}(1,\ -2,\ 3)$,$\mathrm{B}(3,\ 2,\ 2)$と$xy$平面上を動く点$\mathrm{P}$について考える.線分$\mathrm{AP}$の長さと線分$\mathrm{PB}$の長さの和の最小値を$m$としたとき,$\displaystyle \frac{m}{\sqrt{5}}$の値を求めよ.
自治医科大学 私立 自治医科大学 2015年 第14問
$1$辺の長さが$\sqrt{15}$である正四面体$\mathrm{OABC}$について考える.辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{M}$,辺$\mathrm{BC}$を$3:5$に内分する点を$\mathrm{N}$とする.$|\overrightarrow{\mathrm{MN}}|=m$としたとき,$\displaystyle \frac{64m^2}{185}$の値を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。