タグ「長さ」の検索結果

22ページ目:全1099問中211問~220問を表示)
愛媛大学 国立 愛媛大学 2015年 第1問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に$3$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(4,\ 4)$を頂点とする三角形$\mathrm{ABC}$があり,線分$\mathrm{AB}$上に点$\mathrm{P}$がある.ただし,$\mathrm{P}$は線分$\mathrm{AB}$の端点にないものとする.直線$\mathrm{OP}$によって三角形$\mathrm{ABC}$を$2$つの図形に分けたとき,点$\mathrm{A}$を含む図形の面積を$S$とする.線分$\mathrm{AP}$の長さを$t$とするとき,次の問いに答えよ.

(1)$t$の値の範囲を求め,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)直線$\mathrm{OP}$が線分$\mathrm{AC}$と共有点をもつような$t$の値の範囲を求め,その共有点の座標を$t$を用いて表せ.
(3)$S$を$t$を用いて表せ.
東京海洋大学 国立 東京海洋大学 2015年 第2問
$\triangle \mathrm{OAB}$に対して,辺$\mathrm{OA}$の中点を$\mathrm{L}$,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{P}$とする.また,直線$\mathrm{OB}$と直線$\mathrm{AP}$の交点を$\mathrm{N}$,直線$\mathrm{OM}$と直線$\mathrm{BL}$の交点を$\mathrm{Q}$,直線$\mathrm{AN}$と直線$\mathrm{BL}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$および$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)線分の長さの比$\mathrm{BQ}:\mathrm{QR}:\mathrm{RL}$を求めよ.
(4)$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
群馬大学 国立 群馬大学 2015年 第3問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
高知大学 国立 高知大学 2015年 第3問
$1$辺の長さが$1$の正四面体を$\mathrm{OABC}$とし,$\mathrm{A}$から平面$\mathrm{OBC}$に下した垂線を$\mathrm{AH}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$,$\overrightarrow{b} \cdot \overrightarrow{c}$の値をそれぞれ求めよ.
(2)$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(3)$\overrightarrow{\mathrm{AH}}$の大きさ$|\overrightarrow{\mathrm{AH}}|$を求めよ.
(4)$\triangle \mathrm{OBC}$の面積を求めよ.
(5)正四面体の体積$V$を求めよ.
高知大学 国立 高知大学 2015年 第4問
$0 \leqq t<2\pi$とする.関数$f(x)=2x^2+(2+\sin t)x+\cos^2 t-2$について,次の問いに答えよ.

(1)$\displaystyle t=\frac{\pi}{2}$のとき,$y=f(x)$の最小値を求めよ.
(2)$t$がどのような値であっても,$y=f(x)$のグラフは$x$軸と異なる$2$つの共有点を持つことを示せ.
(3)$y=f(x)$のグラフが,$x$軸から切り取る線分の長さの最小値を求めよ.
(4)$(3)$のとき,$y=f(x)$のグラフと$x$軸で囲まれた部分の面積$S$を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第1問
長方形$\mathrm{ABCD}$の対角線$\mathrm{AC}$上に点$\mathrm{P}$をとり,
\[ \mathrm{AB}=\sqrt{3},\quad \angle \mathrm{APB}=\alpha,\quad \angle \mathrm{CPD}=\beta,\quad \angle \mathrm{BAC}=\theta \]
とする.ただし,$\mathrm{P}$は$\mathrm{A}$,$\mathrm{C}$以外の点である.次の問に答えよ.

(1)$\mathrm{AP}$の長さを$\alpha,\ \theta$を用いて表し,$\mathrm{PC}$の長さを$\beta,\ \theta$を用いて表せ.
(2)$\displaystyle \frac{\cos \alpha}{\sin \alpha}+\frac{\cos \beta}{\sin \beta}$を$\theta$を用いて表せ.
(3)$\displaystyle \mathrm{BC}=2+\sqrt{7},\ \beta=\frac{\pi}{6}$のとき,$\alpha$を求めよ.
福井大学 国立 福井大学 2015年 第4問
座標平面上に,$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$と,原点を中心とする半径$2$の円周上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$をとるとき,以下の問いに答えよ.

(1)$\mathrm{P}$を通って,直線$\mathrm{AP}$に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$に関して$\mathrm{A}$と対称な点を$\mathrm{C}$とし,$\ell$と直線$\mathrm{BC}$の交点を$\mathrm{Q}$とおく.線分$\mathrm{BQ}$の長さを$\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの点$\mathrm{Q}$の軌跡は楕円であることを示し,その長軸と短軸の長さの比を求めよ.
室蘭工業大学 国立 室蘭工業大学 2015年 第3問
$a$を定数とし,$\displaystyle 0<a<\frac{\pi}{2}$とする.媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\cos^3 t \\
y=\sin^3 t \phantom{2^{\mkakko{}}} \!\!\!\!\!\!\!\!\!\!
\end{array} \right. \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表される曲線を$C$とする.また,$C$の$0 \leqq t \leqq a$の部分の長さを$L$とする.

(1)$L$を$a$を用いて表せ.ただし,$L$は$\displaystyle L=\int_0^a \sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$と表される.
(2)曲線$C$上の点$\mathrm{P}(\cos^3 a,\ \sin^3 a)$における接線$\ell$の方程式を求めよ.また,$\ell$と$x$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$M$とするとき,$\displaystyle L=\frac{3}{2}M$が成り立つことを示せ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。