タグ「長さ」の検索結果

18ページ目:全1099問中171問~180問を表示)
岡山大学 国立 岡山大学 2015年 第2問
$3$辺の長さが$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}=x$となるようにとる.ただし,$0<x<3$である.このとき,次の問いに答えよ.

(1)$\angle \mathrm{ABC}$の値を求めよ.
(2)三角形$\mathrm{BPQ}$の面積を$x$の式で表せ.
(3)三角形$\mathrm{PQR}$の面積が最小となるときの$x$の値を求めよ.
金沢大学 国立 金沢大学 2015年 第3問
座標平面上で,$x$座標と$y$座標がともに$0$以上の整数である点を,ここでは格子点とよぶ.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へ,両端点がともに格子点であり長さが$1$の線分を用いて,格子点$(0,\ 0)$から順に最も少ない本数でつなぐ方法を数える.例えば,格子点$(0,\ 0)$から格子点$(3,\ 1)$へつなぐ方法の数は$4$である.次の問いに答えよ.

(1)格子点$(0,\ 0)$から格子点$(4,\ 0)$へつなぐ方法の数と,格子点$(0,\ 0)$から格子点$(2,\ 2)$へつなぐ方法の数を,それぞれ求めよ.
(2)条件$k+\ell=5$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を求めよ.
(3)条件$k+\ell=n (n \geqq 1)$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
(4)条件$k+\ell=n$($k$と$\ell$はともに偶数で,$n \geqq 2$)を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
名古屋工業大学 国立 名古屋工業大学 2015年 第3問
次の$\tocichi$,$\tocni$に答えよ.

\mon[$\tocichi$] 次の$5$つの定積分を求めよ.($\tocni \ (4)$で用いる.)

$\displaystyle I_1=\int_0^\pi x \sin x \, dx,\quad I_2=\int_0^\pi x^2 \cos x \, dx,\quad I_3=\int_0^\pi \sin^2 x \, dx$

$\displaystyle I_4=\int_0^\pi x \cos x \sin x \, dx,\quad I_5=\int_0^\pi \sin^2 x \cos x \, dx$

\mon[$\tocni$] 関数$y=\sin x$のグラフを曲線$C$とする.$C$上の点$\mathrm{O}(0,\ 0)$における接線を$\ell_1$,点$\mathrm{A}(\pi,\ 0)$における接線を$\ell_2$とする.
$\ell_1$と$\ell_2$の交点を$\mathrm{B}$,$C$上の点$\mathrm{P}(t,\ \sin t) (0 \leqq t \leqq \pi)$から$\ell_1$に下ろした垂線を$\mathrm{PQ}$とする.ただし,$t=0$のときは$\mathrm{Q}=\mathrm{P}$とする.$\mathrm{OQ}=s$とおく.

\mon[$(1)$] $\angle \mathrm{OBA}$の大きさを求めよ.
\mon[$(2)$] $s$を$t$を用いて表せ.
\mon[$(3)$] 線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
\mon[$(4)$] 曲線$C$と$2$直線$\ell_1$,$\ell_2$で囲まれた部分を,直線$\ell_1$の周りに$1$回転させてできる立体の体積$V$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第4問
四面体$\mathrm{ABCD}$は

$(ⅰ)$ $\mathrm{BA}=\sqrt{66}$,$\mathrm{BC}=7$,$\mathrm{BD}=\sqrt{65}$
$(ⅱ)$ $\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=28$,$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BD}}=35$,$\overrightarrow{\mathrm{BD}} \cdot \overrightarrow{\mathrm{BA}}=40$

を満たす.頂点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線を$\mathrm{AH}$とする.

(1)辺$\mathrm{AC}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{BH}}$を$\overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{BD}}$を用いて表せ.
(3)線分$\mathrm{CH}$の長さを求めよ.
(4)面$\mathrm{ABC}$を直線$\mathrm{AH}$の周りに$1$回転させるとき,面$\mathrm{ABC}$が通過する部分の体積$V$を求めよ.
九州大学 国立 九州大学 2015年 第2問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$,辺$\mathrm{OC}$を$1:3$に内分する点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さと線分$\mathrm{PR}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$の内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}$を求めよ.
(3)三角形$\mathrm{PQR}$の面積を求めよ.
熊本大学 国立 熊本大学 2015年 第1問
$\triangle \mathrm{ABC}$の$3$辺の長さを$\mathrm{BC}=a$,$\mathrm{AC}=b$,$\mathrm{AB}=c$とし,条件
\[ a+b+c=1,\quad 9ab=1 \]
が成り立つとする.以下の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$\theta=\angle \mathrm{C}$とするとき,$\cos \theta$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
鳥取大学 国立 鳥取大学 2015年 第2問
点$\mathrm{O}$を原点とする座標空間において,$4$点$\mathrm{O}$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(1,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を頂点とする四面体がある.点$\mathrm{O}$から平面$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろし,直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)実数$s,\ t,\ u$を用いて,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおくとき,$s,\ t,\ u$を求めよ.
(2)線分$\mathrm{BP}$と線分$\mathrm{PC}$の長さの比$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)線分$\mathrm{AP}$の長さを求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)数列$\{l_n\}$の一般項を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=1$,$\mathrm{CX}_1=8$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を求めよ.
(2)$l_{n+1}$を$l_n$を用いて表せ.
(3)$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてもよい.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。