タグ「長さ」の検索結果

15ページ目:全1099問中141問~150問を表示)
大阪工業大学 私立 大阪工業大学 2016年 第1問
次の空所を埋めよ.

(1)$2$次方程式$2x^2-5x+1=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$2(\alpha-2)(\beta-2)=[イ]$である.
(2)$2^6=13 \times [ウ]-1$であり,$2^{100}$を$13$で割ると$[エ]$余る.ただし,$0 \leqq [エ]<13$とする.
(3)$1$辺の長さが$2$の正三角形$\mathrm{OAB}$がある.このとき,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[オ]$である.また,辺$\mathrm{AB}$上の点$\mathrm{P}$が$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{5}{2}$を満たすとき,点$\mathrm{P}$は辺$\mathrm{AB}$を$[カ]:1$に内分する.
(4)大小$2$つのさいころを同時に投げ,出た目の数をそれぞれ$a,\ b$とする.このとき,積$ab$が偶数になる目の出方は$[キ]$通りあり,$a+3b$が$5$の倍数になる目の出方は$[ク]$通りある.
広島経済大学 私立 広島経済大学 2016年 第4問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=5$,$\angle \mathrm{A}={120}^\circ$とする.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)辺$\mathrm{BC}$の長さは$[$42$]$である.

(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[$43$] \sqrt{[$44$]}}{[$45$]}$である.

(3)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[$46$] \sqrt{[$47$]}}{[$48$]}$である.

(4)$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AD}$の長さは$\displaystyle \frac{[$49$]}{[$50$]}$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第1問
以下の$[ ]$にあてはまる適切な数を記入しなさい.

(1)どの位にも$0$を使わずに,でたらめに$4$桁の整数を作る.このとき,どの位の数字も異なる確率は$[ ]$である.
(2)円に内接する正三角形の面積が$27 \sqrt{3}$のとき,この円の半径は$[ ]$である.
(3)$\displaystyle \lim_{x \to -\infty} \left( 4x+3+\sqrt{16x^2+9} \right)=[ ]$である.

(4)$\displaystyle \frac{\sin {55}^\circ+\sin {175}^\circ+\sin {65}^\circ+\sin {185}^\circ}{\sin {50}^\circ+\cos {50}^\circ}$の値を求めると,$[ ]$である.

(5)$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$3:1$に外分する点を$\mathrm{N}$とする.線分$\mathrm{MN}$と線分$\mathrm{BD}$の交点を$\mathrm{L}$とするとき,線分$\mathrm{AL}$の長さは$[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
近畿大学 私立 近畿大学 2016年 第2問
次の問いに答えよ.

(1)方程式$x^3-3x^2-9x-k=0$が異なる$3$個の実数解を持つように,定数$k$の範囲を定めよ.
(2)辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{AC}=5$の三角形$\mathrm{ABC}$がある.$\cos A$の値を求めよ.$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とすると,三角形$\mathrm{ABD}$の外接円の直径を求めよ.
(3)三角形$\mathrm{ABC}$がある.辺$\mathrm{AC}$の中点を$\mathrm{P}$,線分$\mathrm{BP}$を$t:1-t$に内分する点を$\mathrm{Q}$,直線$\mathrm{CQ}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.$\displaystyle \frac{\mathrm{CQ}}{\mathrm{CR}}$を$t$の式で表せ.また三角形$\mathrm{BQR}$と三角形$\mathrm{CQP}$の面積が等しくなるように$t$の値を定めよ.
名城大学 私立 名城大学 2016年 第1問
次の各問について,答を$[ ]$内に記入せよ.

(1)$\triangle \mathrm{ABC}$の外接円の半径は$1$で,その中心$\mathrm{O}$は$\triangle \mathrm{ABC}$内にあるとする.$\displaystyle \angle \mathrm{BAO}=\frac{\pi}{6}$,$\displaystyle \angle \mathrm{CAO}=\frac{\pi}{4}$のとき,辺$\mathrm{AB}$の長さは$[ア]$であり,$\triangle \mathrm{ABC}$の面積は$[イ]$である.
(2)$1$から$5$までの数字が書かれた玉が,その数字と同じ個数だけ袋に入っている.この袋の中にある$15$個の玉の中から,$3$個の玉を同時に取り出す.玉に書かれた数字の最大値が$4$以下である確率は$[ウ]$であり,玉に書かれた数字の最大値がちょうど$4$である確率は$[エ]$である.
大阪市立大学 公立 大阪市立大学 2016年 第3問
$a,\ b$は実数で,$b>0$とする.放物線$y=x^2$と直線$y=ax+b$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とおく.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さを,$a$と$b$を用いて表せ.
(2)直線$y=ax+b$が点$\displaystyle \left( 1,\ \frac{5}{4} \right)$を通るときの,線分$\mathrm{PQ}$の長さの最小値を求めよ.
大阪市立大学 公立 大阪市立大学 2016年 第3問
$0<r<1$を満たす実数$r$に対して,第$1$象限内の曲線$C:x^r+y^r=1$を考える.曲線$C$上の点$\mathrm{P}(p,\ q)$をとり,$\ell$を点$\mathrm{P}$における$C$の接線とし,$\ell$が$x$軸および$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{B}$の座標を$p,\ q,\ r$を用いて表せ.
(2)点$\mathrm{P}$を曲線$C$上のどこにとっても線分$\mathrm{AB}$の長さが同じになるような$r$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。