タグ「長さ」の検索結果

100ページ目:全1099問中991問~1000問を表示)
九州大学 国立 九州大学 2010年 第1問
三角形$\mathrm{ABC}$の$3$辺の長さを$a = \mathrm{BC},\ b = \mathrm{CA},\ c = \mathrm{AB}$とする.実数$t \geqq 0$を与えたとき,$\mathrm{A}$を始点とし$\mathrm{B}$を通る半直線上に$\mathrm{AP} = tc$となるように点$\mathrm{P}$をとる.次の問いに答えよ.

(1)$\mathrm{CP}^2$を$a,\ b,\ c,\ t$を用いて表せ.
(2)点$\mathrm{P}$が$\mathrm{CP} = a$を満たすとき,$t$を求めよ.
(3)$(2)$の条件を満たす点$\mathrm{P}$が辺$\mathrm{AB}$上にちょうど$2$つあるとき,$\angle \mathrm{A}$と$\angle \mathrm{B}$に関する条件を求めよ.
九州大学 国立 九州大学 2010年 第4問
中心$(0,\ a)$,半径$a$の円を$xy$平面上の$x$軸の上を$x$の正の方向に滑らないように転がす.このとき円上の定点$\mathrm{P}$が原点$(0,\ 0)$を出発するとする.次の問いに答えよ.

(1)円が角$t$だけ回転したとき,点$\mathrm{P}$の座標を求めよ.
(2)$t$が$0$から$2\pi$まで動いて円が一回転したときの点$\mathrm{P}$の描く曲線を$C$とする.曲線$C$と$x$軸とで囲まれる部分の面積を求めよ.
(3)$(2)$の曲線$C$の長さを求めよ.
九州大学 国立 九州大学 2010年 第1問
三角形$\mathrm{ABC}$の$3$辺の長さを$a = \mathrm{BC},\ b = \mathrm{CA},\ c = \mathrm{AB}$とする.実数$t \geqq 0$を与えたとき,$\mathrm{A}$を始点とし$\mathrm{B}$を通る半直線上に$\mathrm{AP} = tc$となるように点$\mathrm{P}$をとる.次の問いに答えよ.

(1)$\mathrm{CP}^2$を$a,\ b,\ c,\ t$を用いて表せ.
(2)点$\mathrm{P}$が$\mathrm{CP} = a$を満たすとき,$t$を求めよ.
(3)$(2)$の条件を満たす点$\mathrm{P}$が辺$\mathrm{AB}$上にちょうど$2$つあるとき,$\angle \mathrm{A}$と$\angle \mathrm{B}$に関する条件を求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に原点Oを中心とする半径1の円を描き,その上半分を$C$とし,その両端をA$(-1,\ 0)$,B$(1,\ 0)$とする.$C$上の2点N,Mを$\text{NM}=\text{MB}$となるように取る.ただし,$\text{N} \neq \text{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \text{MAB}=\theta$とおき,弦の長さMB及び点Mの座標を$\theta$を用いて表せ.
(2)点Nから$x$軸に下ろした垂線をNPとしたとき,PBを$\theta$を用いて表せ.
(3)$t=\sin \theta$とおく.条件$\text{MB}=\text{PB}$を$t$を用いて表せ.
(4)$\text{MB}=\text{PB}$となるような点Mが唯一あることを示せ.
弘前大学 国立 弘前大学 2010年 第5問
各辺の長さが1の正四面体OABCにおいて,辺OBを$3 : 1$に内分する点をP,辺OCの中点をQ,辺BCの中点をRとする.また,直線PQと直線ORとの交点をXとするとき,次の問いに答えよ.

(1)線分OXの長さを求めよ.
(2)線分AXの長さを求めよ.
弘前大学 国立 弘前大学 2010年 第7問
座標平面において,原点を中心とする半径$3$の円を$C$,点$(0,\ -1)$を中心とする半径$8$の円を$C^{\, \prime}$とする.$C$と$C^{\, \prime}$にはさまれた領域を$D$とする.

(1)$0 \leqq k \leqq 3$とする.直線$\ell$と原点との距離が一定値$k$であるように$\ell$が動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
(2)直線$\ell$が$C$と共有点をもつように動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第3問
行列$A=\left( \begin{array}{cc}
0 & -r \\
-r & 0
\end{array} \right) \ (r>0)$と座標平面上の点P$_0(-1,\ 2)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$,$\cdots$,P$_n(x_n,\ y_n)$,$\cdots$は,式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right) = A^n \left( \begin{array}{c}
-1 \\
2
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすものとする.次の問いに答えよ.

(1)$A^{2k},\ A^{2k+1} \ (k=1,\ 2,\ 3,\ \cdots)$を求めよ.
(2)$x_n,\ y_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(3)線分P$_{n-1}$P$_n$の長さを$d_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.数列$\{d_n\}$の初項$d_1$と一般項$d_n$を求めよ.また,無限級数$\displaystyle \sum_{n=1}^{\infty} d_n$が収束し,その和が3となるような$r$の値を求めよ.
信州大学 国立 信州大学 2010年 第1問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たして
いる.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| =\sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+ \overrightarrow{\mathrm{OB}}+ \overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
千葉大学 国立 千葉大学 2010年 第1問
直角三角形$\mathrm{ABC}$は$\angle \mathrm{C}$が直角で,各辺の長さは整数であるとする.辺$\mathrm{BC}$の長さが3以上の素数$p$であるとき,以下の問いに答えよ.

(1)辺$\mathrm{AB}$,$\mathrm{CA}$の長さを$p$を用いて表せ.
(2)$\tan \angle \mathrm{A}$と$\tan \angle \mathrm{B}$は,いずれも整数にならないことを示せ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。