タグ「長さ」の検索結果

10ページ目:全1099問中91問~100問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
四面体$\mathrm{OABC}$の$4$つの面はすべて合同であり,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=2$,$\mathrm{OC}=3$であるとする.このとき,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニ]$であり,三角形$\mathrm{ABC}$の面積は$[ヌ]$である.

いま,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{AH}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて$\overrightarrow{\mathrm{AH}}=[ネ]$と表される.また,四面体$\mathrm{OABC}$の体積は$[ノ]$である.
次に,線分$\mathrm{AH}$と線分$\mathrm{BC}$の交点を$\mathrm{P}$,点$\mathrm{P}$から線分$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$とすると,$\mathrm{PQ}$の長さは$[ハ]$である.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通り平面$\alpha$に垂直な平面による四面体$\mathrm{OABC}$の切り口の面積は$[ヒ]$である.

(図は省略)
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.

(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
早稲田大学 私立 早稲田大学 2016年 第2問
座標空間において,原点$\mathrm{O}$と点$\mathrm{P}(0,\ 0,\ 2)$を直径の両端とする球面を$\mathrm{S}$とする.また$xy$平面上に放物線$\mathrm{C}:y=x^2-2$を描き,$\mathrm{C}$上に点$\mathrm{R}$をとる.線分$\mathrm{PR}$と球面$\mathrm{S}$の交点を$\mathrm{Q}$とし,$\mathrm{Q}$から$xy$平面に下ろした垂線の足を$\mathrm{H}$とする.このとき,以下の問に答えよ.

(1)原点$\mathrm{O}$から点$\mathrm{R}$までの距離を$r$とするとき,線分$\mathrm{QR}$の長さを$r$を用いて表せ.
(2)線分$\mathrm{QH}$の長さを$h$,点$\mathrm{R}$の座標を$(x,\ y,\ 0)$とするとき,$h \geqq 1$である場合に$x$がとる値の範囲を求めよ.
(3)点$\mathrm{R}$が放物線$\mathrm{C}$上のすべての点を動くとき,$h$を最小にする$\mathrm{R}$の座標を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2016年 第4問
以下の問に答えよ.

(1)次の空欄にあてはまる式または数を記入せよ.
半径$1$の円$\mathrm{O}$に内接する長方形$\mathrm{ABCD}$がある.角$\mathrm{OAB}$を$\displaystyle x \left( 0<x<\frac{\pi}{2} \right)$とするとき,長方形$\mathrm{ABCD}$の面積は$[ア]$となる.したがって,$x=[イ]$のとき最大面積$[ウ]$をとる.
(2)半径$1$の円$\mathrm{O}$に内接する$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の内角
\[ \mathrm{A}_k \mathrm{A}_{k+1} \mathrm{A}_{k+2} \quad (k=1,\ 2,\ \cdots,\ n,\ n \geqq 3 \;;\; \text{ただし,} \mathrm{A}_{n+1}=\mathrm{A}_1,\ \mathrm{A}_{n+2}=\mathrm{A}_2) \]
がすべて$\alpha (0<\alpha<\pi)$に等しいとする.このとき,次の問に答えよ.

(i) $a_k (k=1,\ 2,\ \cdots,\ n)$は弧$\mathrm{A}_k \mathrm{A}_{k+1}$の長さを表すとする.角$\displaystyle \mathrm{OA}_k \mathrm{A}_{k+1}=\theta_k \left( 0<\theta_k<\frac{\pi}{2} \right)$とおくとき,$a_k$,$a_{k+1}$および$a_k+a_{k+1}$を,$\theta_k$,$\alpha$を用いて表せ.
(ii) $n$が奇数のとき,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$は正$n$角形となることを示せ.
(iii) $n$が偶数のとき,$\theta_1=\theta_3=\cdots =\theta_{n-1}$を示せ.さらに,その等しい角を$\theta$とおいて,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の面積$S_n(\theta)$を$\alpha$,$\theta$を用いて表せ.
\mon[$\tokeishi$] $\alpha$を$n$の式で表し,$(ⅲ)$における$S_n(\theta)$の最大値とそのときの$\theta$を$n$の式で表せ.

(図は省略)
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$に対して,ベクトル$\overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{p}=(\sin A,\ \sin B),\quad \overrightarrow{q}=(\cos B,\ \cos A) \]
とするとき
\[ \overrightarrow{p} \cdot \overrightarrow{q}=\sin 2C \]
が成り立つ.以下の問に答えよ.


(1)角$C$の大きさは$\displaystyle \frac{[エ]}{[オ]} \pi$である.

(2)$\sin A,\ \sin C,\ \sin B$はこの順で等差数列をなし,かつ,
\[ \overrightarrow{\mathrm{CA}} \cdot (\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}})=32 \]
であるとき,辺$\mathrm{AB}$の長さは$[カ]$である.
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$に対して,ベクトル$\overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{p}=(\sin A,\ \sin B),\quad \overrightarrow{q}=(\cos B,\ \cos A) \]
とするとき
\[ \overrightarrow{p} \cdot \overrightarrow{q}=\sin 2C \]
が成り立つ.以下の問に答えよ.


(1)角$C$の大きさは$\displaystyle \frac{[エ]}{[オ]} \pi$である.

(2)$\sin A,\ \sin C,\ \sin B$はこの順で等差数列をなし,かつ,
\[ \overrightarrow{\mathrm{CA}} \cdot (\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}})=32 \]
であるとき,辺$\mathrm{AB}$の長さは$[カ]$である.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)赤と青の$2$色を両方とも必ず用いて,正四面体の各面を塗り分ける場合の数は$[ア]$通りである.ただし,回転して一致する場合は同じものとみなす.
(2)$n$を$1 \leqq n \leqq 16$を満たす整数とする.$5n$を$17$で割ったときの余りが$1$となるとき,$n=[イ]$である.
(3)$A=\log_4 120-\log_4 6-\log_4 10$を計算すると,$A=[ウ]$である.
(4)$k$を実数とし,$2$次方程式$x^2+kx-1=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-(k+4)x+1=0$が$2$つの解$\alpha^2$と$\beta^2$を持つとき,$k$の値をすべて求めると,$k=[エ]$である.
(5)$a,\ b$を実数とする.$x$の$2$次式$f(x)$が,$x^2 f^\prime(x)-f(x)=x^3+ax^2+bx$を満たすとき,$a+b=[オ]$である.
(6)三角形$\mathrm{ABC}$の辺の長さがそれぞれ$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CA}=4$のとき,三角形$\mathrm{ABC}$に内接する円の半径は$[カ]$である.
(7)$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$において,$\tan \theta=2$が成り立つとき,$\cos \theta=[キ]$である.
(8)曲線$y=x^3-x^2+x+1$と曲線$y=x^3-2x^2+5x-2$で囲まれた図形の面積は$[ク]$である.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。