タグ「鋭角」の検索結果

4ページ目:全40問中31問~40問を表示)
北星学園大学 私立 北星学園大学 2012年 第2問
$\triangle \mathrm{ABC}$において以下の問に答えよ.

(1)$\displaystyle \sin A=\frac{\sqrt{7}}{4}$かつ$\angle \mathrm{A}$が鋭角のとき,$\cos A$の値を求めよ.
(2)$\tan A=-5$のとき,$\cos A$の値を求めよ.
(3)$\tan A=a$のとき,$\sin A$の値を$a$を用いて表せ.
岐阜大学 国立 岐阜大学 2011年 第4問
空間内の四面体OABCについて,$\angle \text{OAC}=\angle \text{OAB}=90^\circ,\ \angle \text{BOC}=\alpha,\ \angle \text{COA}=\beta,\ \angle \text{AOB}=\gamma,\ \text{OA}=1$とする.ただし,$\alpha,\ \beta,\ \gamma$はすべて鋭角で,$\displaystyle \cos \alpha=\frac{1}{4},\ \cos \beta=\frac{1}{\sqrt{3}},\ \cos \gamma=\frac{1}{\sqrt{3}}$である.三角形ABCの外接円を$S$とし,その中心をPとする.以下の問に答えよ.

(1)辺BCの長さを求めよ.
(2)$\theta=\angle \text{BAC}$とするとき,$\cos \theta$の値を求めよ.
(3)線分OPの長さを求めよ.
(4)円$S$の周上に点Dをとり,線分ADと線分DBの長さをそれぞれ$\text{AD}=x,\ \text{DB}=y$とする.$x+y$の最大値とそれを与える$x,\ y$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第5問
四面体$\mathrm{OABC}$において$\mathrm{OA}=\mathrm{BC}=2$,$\mathrm{OB}=3$,$\mathrm{OC}=\mathrm{AB}=4$,$\mathrm{AC}=2\sqrt{6}$である.
また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}= \overrightarrow{\mathrm{OC}}$とする.以下の問に答えよ.

(1)内積$\overrightarrow{a}\cdot\overrightarrow{b},\ \overrightarrow{a}\cdot\overrightarrow{c},\ \overrightarrow{b}\cdot\overrightarrow{c}$を求めよ.
(2)$\triangle \mathrm{OAB}$を含む平面を$H$とする.$H$上の点$\mathrm{P}$で直線$\mathrm{PC}$と$H$が直交するものをとる.このとき,$\overrightarrow{\mathrm{OP}}=x\overrightarrow{a}+y\overrightarrow{b}$となる$x,\ y$を求めよ.
(3)平面$H$を直線$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$で右図のように$7$つの \\
領域ア,イ,ウ,エ,オ,カ,キにわける.点$\mathrm{P}$はどの \\
領域に入るか答えよ.
\img{304_23_2011_1}{20}
(4)辺$\mathrm{AB}$で$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$のなす角は鋭角になるか,直角になるか,それとも鈍角になるかを判定せよ.ただし,$1$辺を共有する$2$つの三角形のなす角とは,共有する辺に直交する平面での$2$つの三角形の切り口のなす角のことである.
北星学園大学 私立 北星学園大学 2011年 第4問
$\triangle \mathrm{ABC}$について,以下の問に答えよ.

(1)$\sin^2 B+\sin^2 C=\sin^2 A$のとき,$\angle \mathrm{A}$の大きさを求めよ.
(2)$\sin^2 B+\sin^2 C>\sin^2 A$のとき,$\angle \mathrm{A}$が鋭角であることを証明せよ.
岩手大学 国立 岩手大学 2010年 第2問
座標平面上に$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ 11)$,$\mathrm{C}(-1,\ 6)$があるとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{A}$を通り,ベクトル$\overrightarrow{\mathrm{AC}}$を方向ベクトルとする直線上の点を$\mathrm{D}$とする.$\triangle \mathrm{ABD}$の面積が$45$となる点$\mathrm{D}$の座標を求めよ.ただし,$\angle \mathrm{BAD}$は鋭角とする.
(3)線分$\mathrm{AB}$上の点を$\mathrm{E}$とするとき,$\angle \mathrm{ACE}$が$60^\circ$となる点$\mathrm{E}$の座標を求めよ.
福井大学 国立 福井大学 2010年 第1問
平面上に$\text{OA}=\text{OB}=1$である鋭角二等辺三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とし,$k=\overrightarrow{a} \cdot \overrightarrow{b}$とおく.点Aから辺OBに下ろした垂線とOBとの交点をMとし,Mから辺OAに下ろした垂線とOAとの交点をNとする.さらに,線分AMと線分BNの交点をPとするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}=s\overrightarrow{b}$と$\overrightarrow{\mathrm{ON}}=t\overrightarrow{a}$を満たす実数$s,\ t$を$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(3)Pが線分BNを$4:3$に内分するとき,$\triangle$OABは正三角形であることを示せ.
福井大学 国立 福井大学 2010年 第2問
平面上に$\text{OA}=\text{OB}=1$である鋭角二等辺三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とし,$k=\overrightarrow{a} \cdot \overrightarrow{b}$とおく.点Aから辺OBに下ろした垂線とOBとの交点をMとし,Mから辺OAに下ろした垂線とOAとの交点をNとする.さらに,線分AMと線分BNの交点をPとするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}=s\overrightarrow{b}$と$\overrightarrow{\mathrm{ON}}=t\overrightarrow{a}$を満たす実数$s,\ t$を$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(3)Pが線分BNを$4:3$に内分するとき,$\triangle$OABは正三角形であることを示せ.
広島工業大学 私立 広島工業大学 2010年 第4問
平行四辺形$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OC}=1$とし,$\angle \mathrm{AOC}$は鋭角とする.また,辺$\mathrm{OA}$上に点$\mathrm{P}$をとり,$\displaystyle \frac{\mathrm{OP}}{\mathrm{OA}}=t$とする.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{c}$とする.このとき,ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}$と$\overrightarrow{c}$および実数$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$\cos \theta$を$t$を用いて表せ.ただし,$\angle \mathrm{AOC}=\theta$とする.
(3)三角形$\mathrm{OCP}$の面積が平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{1}{5}$であるとき,$t$の値を求めよ.さらに,$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$(2)$で定めた角$\theta$の大きさを求めよ.
神戸薬科大学 私立 神戸薬科大学 2010年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.

(1)$x+y=\sqrt{3}$,$x^2+y^2=5$のとき,$x^3+y^3$は$[ ]$であり,$\displaystyle \frac{y}{x^2}+\frac{x}{y^2}$は$[ ]$である.
(2)次の問いに答えよ.

(i) $\sin 1$,$\sin 2$,$\sin 3$,$\sin 4$のなかで,負となるものは$[ ]$である.また,正となるものの最小値は$[ ]$であり,最大値は$[ ]$である.
(ii) $A,\ B (A \neq B)$がいずれも鋭角のとき,次の$3$つの数の最小値は$[ ]$,最大値は$[ ]$である.
\[ \sin \frac{A+B}{2},\quad \sin \frac{A}{2}+\sin \frac{B}{2},\quad \frac{\sin A+\sin B}{2} \]
大阪市立大学 公立 大阪市立大学 2010年 第3問
$a,\ b$を正の実数とし,座標平面上の放物線$C : y = ax^2 +b$を考える.$t,\ s$は正の実数とし,点P$(t,\ at^2 +b)$における$C$の接線を$\ell_P$,点Q$(s,\ as^2 +b)$における$C$の接線を$\ell_Q$で表す.$\ell_P$は原点を通っているとする.次の問いに答えよ.

(1)$\ell_P$の傾きが1未満となるための必要十分条件を,$a$と$b$を用いて表せ.
(2)$\ell_P$の傾きは1未満とし,$\ell_P$と$x$軸がなす鋭角を$\theta$と表す.Qを$\ell_Q$と$x$軸のなす鋭角が$2\theta$になるようにとるとき,$\ell_Q$の傾きを$a$と$b$を用いて表せ.
(3)$a,\ b$が$\displaystyle a+b = \frac{1}{2}$をみたすとき,$\ell_P$の傾きは1未満であることを示せ.
(4)$a,\ b$は$\displaystyle a+b = \frac{1}{2}$をみたすものとし,Qを(2)のようにとる.$\ell_Q$の傾きが最大になるような$a,\ b$を求めよ.
スポンサーリンク

「鋭角」とは・・・

 まだこのタグの説明は執筆されていません。