タグ「鋭角三角形」の検索結果

3ページ目:全39問中21問~30問を表示)
広島工業大学 私立 広島工業大学 2013年 第6問
正八角形の$8$つの頂点から$3$つを選んで三角形を作る.次の問いに答えよ.

(1)三角形の総数を求めよ.
(2)直角三角形の総数を求めよ.
(3)鋭角三角形の総数を求めよ.
横浜国立大学 国立 横浜国立大学 2012年 第5問
鋭角三角形$\mathrm{ABC}$の$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$\alpha,\ \beta,\ \gamma$で表す.点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$はそれぞれ辺$\mathrm{CA}$,$\mathrm{AB}$,$\mathrm{BC}$上にあり,$\mathrm{DE} \perp \mathrm{AB},\ \mathrm{EF} \perp \mathrm{BC},\ \mathrm{FD} \perp \mathrm{CA}$を満たす.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$は相似であることを示せ.
(2)$\displaystyle \frac{\mathrm{BC}}{\mathrm{EF}}= \frac{1}{\tan \alpha}+\frac{1}{\tan \beta}+\frac{1}{\tan \gamma}$を示せ.
(3)$\alpha$が一定のとき,$\displaystyle \frac{\mathrm{BC}}{\mathrm{EF}}$を最小にするような$\beta,\ \gamma$を$\alpha$で表せ.
岐阜大学 国立 岐阜大学 2012年 第3問
鋭角三角形OABにおいて,$\text{OA} \geqq \text{OB}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.実数$t,\ s$を$0<t<1,\ 0<s<1$とする.辺OAを$t:(1-t)$の比に内分する点をP,辺OBを$s:(1-s)$の比に内分する点をQ,直線AQと直線BPとの交点をRとする.以下の問に答えよ.
\setlength\unitlength{1truecm}

(図は省略)


(1)ベクトル$\overrightarrow{\mathrm{OR}}$を$t,\ s,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$t,\ |\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \overrightarrow{a} \cdot \overrightarrow{b}$を用いて$s$を表せ.
(3)$\overrightarrow{\mathrm{OR}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$s \geqq t$となることを示せ.このとき,$s=t$ならば$\text{OA}=\text{OB}$となることを示せ.
岐阜大学 国立 岐阜大学 2012年 第3問
鋭角三角形OABにおいて,$\text{OA} \geqq \text{OB}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.実数$t,\ s$を$0<t<1,\ 0<s<1$とする.辺OAを$t:(1-t)$の比に内分する点をP,辺OBを$s:(1-s)$の比に内分する点をQ,直線AQと直線BPとの交点をRとする.以下の問に答えよ.
\setlength\unitlength{1truecm}

(図は省略)


(1)ベクトル$\overrightarrow{\mathrm{OR}}$を$t,\ s,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$t,\ |\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \overrightarrow{a} \cdot \overrightarrow{b}$を用いて$s$を表せ.
(3)$\overrightarrow{\mathrm{OR}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$s \geqq t$となることを示せ.このとき,$s=t$ならば$\text{OA}=\text{OB}$となることを示せ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
南山大学 私立 南山大学 2012年 第2問
座標空間に$3$つの点$\mathrm{A}(4,\ 5,\ 4)$,$\mathrm{B}(6,\ 2,\ 2)$,$\mathrm{C}(2,\ 1,\ 3)$がある.

(1)$3$つの内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}}$を求めよ.
(2)$\triangle \mathrm{ABC}$は鋭角三角形,直角三角形,鈍角三角形のいずれになるか,(1)の結果を用いて示せ.
(3)点$\mathrm{P}(a,\ b,\ 0)$から,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$までの距離がそれぞれ$\sqrt{18}$,$\sqrt{17}$,$\sqrt{19}$であるとき,$a,\ b$の値を求めよ.
昭和大学 私立 昭和大学 2012年 第4問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{6}+\sqrt{2}$,$\mathrm{AC}=2 \sqrt{3}$で面積が$3+\sqrt{3}$のとき,以下の値を求めよ.

(1)$\sin A$
(2)$\cos A$
(3)三角形$\mathrm{ABC}$の外接円の半径
(4)三角形$\mathrm{ABC}$の内接円の半径
杏林大学 私立 杏林大学 2012年 第1問
$[カ]$,$[キ]$の解答はそれぞれの解答群の中から最も適当なものを$1$ずつ選べ.

袋の中に,$1$から$13$までの数字が書かれたカードが$1$枚ずつ入っている.この袋から$3$枚のカードを同時に取り出して,カードに書かれた数字を小さい方から順に$x,\ y,\ z$と定め,カードを袋に戻すという操作を行う.このような操作によって取りうるすべての整数の組$(x,\ y,\ z)$を,重複なく集めてできる集合
\[ U=\{ (x,\ y,\ z) \;|\; x,\ y,\ z \text{はカードを取り出して定められる数} \} \]
を全体集合と定める.また,集合$U$の部分集合$P,\ Q$をそれぞれ
$P=\{ (x,\ y,\ z) \;|\; z>x+y,\ (x,\ y,\ z) \in U \},$
$Q=\{ (x,\ y,\ z) \;|\; z<x+y,\ (x,\ y,\ z) \in U \}$
とする.

(1)集合$U$の要素の個数は$[アイウ]$である.また,$\overline{P} \cap \overline{Q}$に含まれる要素の個数は$[エオ]$である.
(2)集合$U$の要素$(x,\ y,\ z)$を
\[ \left\{ \begin{array}{l}
x^\prime=z-y \\
y^\prime=z-x \\
z^\prime=z
\end{array} \right. \]
で表わされる$(x^\prime,\ y^\prime,\ z^\prime)$に移す変換を$f$とする.このとき,集合$P$の要素$p$の変換$f$による像$p^\prime$は$p^\prime [カ]$を満たし,$p^\prime$の変換$f$による像$p^{\prime\prime}$は$p^{\prime\prime} [キ]$となる.
また,集合$Q$の要素の個数は$[クケコ]$である.

$[カ]$の解答群
\[ \begin{array}{lll}
① \in P \phantom{AAA} & ② \in Q & ③ \in \overline{P} \\
④ \in \overline{Q} & ⑤ \in \overline{P} \cap \overline{Q} \phantom{AAA} & ⑥ \not\in U
\end{array} \]
$[キ]$の解答群
\[ \begin{array}{llll}
① \in Q \phantom{AAA} & ② \in \overline{P} \phantom{AAA} & ③ \in \overline{Q} \phantom{AAA} & ④ \in \overline{P} \cap \overline{Q} \\
⑤ \not\in U & ⑥ =p & ④chi =p^\prime &
\end{array} \]
(3)$3$辺の長さがそれぞれ$x,\ y,\ z$である直角三角形を作ることができる$(x,\ y,\ z)$の組は$[サ]$通りある.また,$z=13$の場合,$3$辺の長さが$x,\ y,\ z$である鋭角三角形を作ることができる$(x,\ y,\ z)$の組は$[シス]$通りである.
香川大学 国立 香川大学 2011年 第3問
$t$がすべての実数をとるとき,3点A$(t,\ t^2)$,B$(t,\ t-2)$,C$(t+\sqrt{3},\ t^2-t-1)$について,次の問に答えよ.

(1)各実数$t$に対して,AとBは異なる点であることを示せ.
(2)$\triangle$ABCが直角三角形になる$t$をすべて求めよ.
(3)$\triangle$ABCが鋭角三角形になる$t$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第3問
$t$がすべての実数をとるとき,3点A$(t,\ t^2)$,B$(t,\ t-2)$,C$(t+\sqrt{3},\ t^2-t-1)$について,次の問に答えよ.

(1)各実数$t$に対して,AとBは異なる点であることを示せ.
(2)$\triangle$ABCが直角三角形になる$t$をすべて求めよ.
(3)$\triangle$ABCが鋭角三角形になる$t$の範囲を求めよ.
スポンサーリンク

「鋭角三角形」とは・・・

 まだこのタグの説明は執筆されていません。