タグ「重複」の検索結果

2ページ目:全45問中11問~20問を表示)
東京医科歯科大学 国立 東京医科歯科大学 2014年 第1問
自然数$n$に対し,$3$個の数字$1,\ 2,\ 3$から重複を許して$n$個並べたもの$(x_1,\ x_2,\ \cdots,\ x_n)$の全体の集合を$S_n$とおく.$S_n$の要素$(x_1,\ x_2,\ \cdots,\ x_n)$に対し,次の$2$つの条件を考える.

条件$\mathrm{C}_{12}$:$1 \leqq i<j \leqq n$である整数$i,\ j$の組で,$x_i=1$,$x_j=2$を満たすものが少なくとも$1$つ存在する.
条件$\mathrm{C}_{123}$:$1 \leqq i<j<k \leqq n$である整数$i,\ j,\ k$の組で,$x_i=1$,$x_j=2$,$x_k=3$を満たすものが少なくとも$1$つ存在する.
例えば,$S_4$の要素$(3,\ 1,\ 2,\ 2)$は条件$\mathrm{C}_{12}$を満たすが,条件$\mathrm{C}_{123}$は満たさない.
$S_n$の要素$(x_1,\ x_2,\ \cdots,\ x_n)$のうち,条件$\mathrm{C}_{12}$を満たさないものの個数を$f(n)$,条件$\mathrm{C}_{123}$を満たさないものの個数を$g(n)$とおく.このとき以下の各問いに答えよ.

(1)$f(4)$と$g(4)$を求めよ.
(2)$f(n)$を$n$を用いて表せ.
(3)$g(n+1)$を$g(n)$と$f(n)$を用いて表せ.
(4)$g(n)$を$n$を用いて表せ.
和歌山大学 国立 和歌山大学 2014年 第4問
箱の中に,$1$から$4$までの整数が$1$つずつ重複せずに書かれた$4$枚のカードが入っている.この箱から$2$枚のカードを同時に取り出し,書かれた整数のうち,小さい方を$a$,大きい方を$b$とする.また,放物線$C:y=x^2$上の点$(a,\ a^2)$における接線を$\ell$とし,$\ell$に平行で点$(b,\ b^2)$を通る直線を$m$とする.さらに,放物線$C$と直線$m$で囲まれた部分の面積を$S$とする.このとき,次の問いに答えよ.

(1)直線$m$の方程式を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$S$の期待値を求めよ.
佐賀大学 国立 佐賀大学 2014年 第3問
$10$個のアルファベットの大文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$を重複を許して並べてできる$5$文字の順列を$1$枚のカードに$1$つずつ書くとする.なお,文字$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$は上下を逆さまにしてもそれぞれ$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$と読めるので,これらの文字で書かれた$5$文字の順列はカードごと上下を逆さまにすると,$i=1,\ 2,\ 3,\ 4,\ 5$に対して$i$番目の文字がもとの$6-i$番目の文字に対応する$5$文字の順列が書かれたカードとして使えるとする.例えば,$\mathrm{HIOXX}$と書かれたカードは上下を逆さまにして,$\mathrm{XXOIH}$と書かれたカードとしても使える.しかし,$\mathrm{ABEIF}$と書かれたカードは上下を逆さまにすると$5$文字の順列を表すカードとしては使えない.このとき,次の問に答えよ.

(1)上下を逆さまにして読んでも同じ順列を表すカードの総数を求めよ.
(2)上下を逆さまにして読むと異なる順列を表すカードの総数を求めよ.
(3)上下を逆さまにすることにより$1$枚のカードを$2$度まで使うことを許すとする.すべての順列を書くためには,最小限で何枚のカードが必要か.
佐賀大学 国立 佐賀大学 2014年 第1問
$10$個のアルファベットの大文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$を重複を許して並べてできる$5$文字の順列を$1$枚のカードに$1$つずつ書くとする.なお,文字$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$は上下を逆さまにしてもそれぞれ$\mathrm{H}$,$\mathrm{I}$,$\mathrm{O}$,$\mathrm{X}$と読めるので,これらの文字で書かれた$5$文字の順列はカードごと上下を逆さまにすると,$i=1,\ 2,\ 3,\ 4,\ 5$に対して$i$番目の文字がもとの$6-i$番目の文字に対応する$5$文字の順列が書かれたカードとして使えるとする.例えば,$\mathrm{HIOXX}$と書かれたカードは上下を逆さまにして,$\mathrm{XXOIH}$と書かれたカードとしても使える.しかし,$\mathrm{ABEIF}$と書かれたカードは上下を逆さまにすると$5$文字の順列を表すカードとしては使えない.このとき,次の問に答えよ.

(1)上下を逆さまにして読んでも同じ順列を表すカードの総数を求めよ.
(2)上下を逆さまにして読むと異なる順列を表すカードの総数を求めよ.
(3)上下を逆さまにすることにより$1$枚のカードを$2$度まで使うことを許すとする.すべての順列を書くためには,最小限で何枚のカードが必要か.
福岡大学 私立 福岡大学 2014年 第3問
$1,\ 2,\ 3,\ 4$の$4$個の数字を使って,$3$桁の数を作る.このとき,各桁の数字が異なり,$3$の倍数となる数は$[ ]$個ある.また,各桁の数字に重複を許すとき,$3$の倍数となる数は$[ ]$個ある.
福岡大学 私立 福岡大学 2014年 第4問
$0,\ 1,\ 2,\ 3,\ 4$の$5$個の数字を使って,$4$桁の数を作る.このとき,各桁の数字が異なり,$3$の倍数となる数は$[ ]$個ある.また,各桁の数字に重複を許すとき,$3$の倍数となる数は$[ ]$個ある.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x^2-6x+4=0$の解を$\alpha,\ \beta$(ただし,$\alpha<\beta$)とするとき,$\alpha^2+\beta^2=[ア]$,$\sqrt{\alpha}-\sqrt{\beta}=[イ]$である.
(2)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字を重複せずに使って整数を作るとき,$4$桁の整数は$[ウ]$個,$2000$より大きな$4$桁の整数は$[エ]$個ある.
(3)$\displaystyle \cos \theta-\sin \theta=\frac{1}{\sqrt{2}} (0<\theta<\frac{\pi}{4})$のとき,$\cos \theta+\sin \theta=[オ]$であり,$\cos 2\theta=[カ]$である.
(4)$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とするとき,${12}^{2014}$は$[キ]$桁の整数である.また,$\displaystyle \left( \frac{1}{8} \right)^{10}$は小数第$[ク]$位に初めて$0$でない数字が現れる.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第2問
異なる$n$個の整数$1,\ 2,\ 3,\ \cdots,\ n$の中から重複を許して$2$個の整数を選び,すべての組合せについて,$2$数の和および積をたし合わせたものをそれぞれ$S(n)$,$T(n)$とする.$n \geqq 2$であるとき,次の問いに答えよ.

(1)$S(3)$,$T(3)$を求めよ.
(2)$S(n)$,$T(n)$を$n$の式で表せ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第5問
異なる$n$個の整数$1,\ 2,\ 3,\ \cdots,\ n$の中から$3$個の整数を選び,それらの和を$3$で割った余りが$0,\ 1,\ 2$となる確率をそれぞれ$p_n$,$q_n$,$r_n$とするとき,次の問いに答えよ.

(1)同じ整数を重複して選ぶことを許すとき,$p_9$,$q_9$,$r_9$を求めよ.
(2)同じ整数を重複して選ぶことを許さないとき,

(i) $p_{3k}$,$q_{3k}$,$r_{3k}$を$k$を用いて表せ.ただし,$k \geqq 3$とする.
(ii) $\displaystyle \lim_{k \to \infty} p_{3k}$を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2014年 第7問
$x^3=1$の解のうち$1$でないものの$1$つを$\omega$とし,$y=(x_1+\omega x_2+\omega^2 x_3)^3$を考える.$x_1$,$x_2$,$x_3$に$1$から$3$までの自然数を重複を許さないように代入するとき$y$が取り得る値は何通りあるか.
スポンサーリンク

「重複」とは・・・

 まだこのタグの説明は執筆されていません。