タグ「重複」の検索結果

1ページ目:全45問中1問~10問を表示)
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第6問
$7$個の数字$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$を重複なく使ってできる$4$桁の数について,次の設問に答えよ.

(1)$4$桁の数はすべてで何個あるか.
(2)そのうち,$5500$よりも大きい数は何個あるか.
(3)$4$桁の数を小さい順に並べたとき,$150$番目の数を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
岡山県立大学 公立 岡山県立大学 2016年 第1問
整数$1,\ 2,\ 3,\ 4,\ 5$から三つの整数を重複なく選び,それを並べて$3$桁の整数を作る.次の問いに答えよ.

(1)このような整数は何個あるか.
(2)このような整数をすべて足し合わせるといくらになるか.
(3)このような整数のうち,$2$の倍数は何個あるか.
(4)このような整数のうち,$3$の倍数は何個あるか.
(5)このような整数を重ねて$6$桁の整数を作る.例えば,$215$を重ねて$215215$とする.このようにしてできた$6$桁の整数は$7$の倍数であることを示せ.
前橋工科大学 公立 前橋工科大学 2016年 第1問
$n=0,\ 1,\ 2,\ \cdots$に対して,$a_n=2^n$とする.自然数$N$に対して,$a_0,\ a_1,\ \cdots,\ a_N$から重複なしにいくつかを選んで和をとるという操作を考える.例えば,$N=1$のときには,この操作によって自然数$1,\ 2,\ 3$を作ることができる($1=a_0,\ 2=a_1,\ 3=a_0+a_1$).次の問いに答えなさい.

(1)$N=2$のとき,$7$以下のすべての自然数をこの操作によって作りなさい.
(2)この操作によって作ることのできる最大の自然数は$2^{N+1}-1$であることを示しなさい.
(3)自然数$N$に対して,$2^{N+1}-1$以下のすべての自然数をこの操作によって作ることができる.このことを数学的帰納法を用いて証明しなさい.
(4)この操作によって$253$を作ることのできる最小の$N$の値を求めなさい.
鳥取大学 国立 鳥取大学 2015年 第1問
$4$個の数字$1,\ 2,\ 3,\ 4$を使ってできる$5$桁の整数について,以下の個数を求めよ.ただし,同じ数字を重複して使ってよいものとする.

(1)$2$の倍数の個数
(2)$9$の倍数の個数
(3)$22000$以上の整数の個数
鳥取大学 国立 鳥取大学 2015年 第2問
$4$個の数字$1,\ 2,\ 3,\ 4$を使ってできる$5$桁の整数について,以下の個数を求めよ.ただし,同じ数字を重複して使ってよいものとする.

(1)$2$の倍数の個数
(2)$9$の倍数の個数
(3)$22000$以上の整数の個数
鳥取大学 国立 鳥取大学 2015年 第1問
次の問いに答えよ.

(1)$4$個の数字$1,\ 2,\ 3,\ 4$を使ってできる$5$桁の整数について,以下の個数を求めよ.ただし,同じ数字を重複して使ってよいものとする.

(i) $2$の倍数の個数
(ii) $9$の倍数の個数
(iii) $22000$以上の整数の個数

(2)前問と同じ方式で$5$桁の整数を独立に$2$個作り,それらを$m,\ n$とするとき,$m \leqq n$となる$(m,\ n)$の組の個数を求めよ.
広島大学 国立 広島大学 2015年 第5問
$m,\ n$を自然数とする.次の問いに答えよ.

(1)$m \geqq 2$,$n \geqq 2$とする.異なる$m$種類の文字から重複を許して$n$個を選び,$1$列に並べる.このとき,ちょうど$2$種類の文字を含む文字列は何通りあるか求めよ.
(2)$n \geqq 3$とする.$3$種類の文字$a,\ b,\ c$から重複を許して$n$個を選び,$1$列に並べる.このとき$a,\ b,\ c$すべての文字を含む文字列は何通りあるか求めよ.
(3)$n \geqq 3$とする.$n$人を最大$3$組までグループ分けする.このときできたグループ数が$2$である確率$p_n$を求めよ.ただし,どのグループ分けも同様に確からしいとする.
たとえば,$n=3$のとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人をグループ分けする方法は
$\{(\mathrm{A},\ \mathrm{B},\ \mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{B}),\ (\mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{C}),\ (\mathrm{B})\}$
$\{(\mathrm{B},\ \mathrm{C}),\ (\mathrm{A})\},\quad \{(\mathrm{A}),\ (\mathrm{B}),\ (\mathrm{C})\}$
の$5$通りであるので,$\displaystyle p_3=\frac{3}{5}$である.
(4)$(3)$の確率$p_n$が$\displaystyle \frac{1}{3}$以下となるような$n$の範囲を求めよ.
早稲田大学 私立 早稲田大学 2015年 第2問
$3$種類の記号$a,\ b,\ c$から重複を許して$n$個を選び,それらを一列に並べて得られる長さ$n$の記号列を考える.このような記号列のなかで,$a$がちょうど偶数個含まれるようなものの総数を$g(n)$とする.ただし,$0$個の場合も偶数個とみなす.たとえば,$g(1)=2$,$g(2)=5$である.

(1)自然数$n \geqq 1$に対して$g(n+1)=g(n)+3^n$が成り立つことを示せ.
(2)$g(n)$を求めよ.
(3)一般に,$a$を含む$m$種類の記号から重複を許して$n$個を選び,それらを一列に並べて得られる長さ$n$の記号列を考える.ただし,$m \geqq 2$とする.このような記号列のなかで,$a$がちょうど奇数個含まれるようなものの総数を$k_m(n)$とする.自然数$n \geqq 1$に対して,$k_m(n)$を求めよ.
金沢大学 国立 金沢大学 2014年 第3問
行列
\[ P=\left( \begin{array}{cc}
x & \displaystyle\frac{\sqrt{2}}{3} \\
\displaystyle\frac{\sqrt{2}}{3} & y
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^2=P$をみたす実数の組$(x,\ y)$は$2$組ある.これらを求めよ.
(2)$(1)$で求めた$2$つの組を$(x_1,\ y_1)$,$(x_2,\ y_2)$とし,それぞれに対応する行列$P$を$P_1$,$P_2$とおく.ただし,$x_1<x_2$とする.このとき,$n=1,\ 2,\ 3,\ \cdots$に対し
\[ (P_1P_2)^nP_1=r_nP_1 \]
をみたす実数$r_n$を求めよ.
(3)重複を許して$P_1$,$P_2$を$6$個並べて得られる順列
\[ Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5 \quad Q_6 \]
のうちで$Q_1=P_1$となるものすべてを考え,それぞれの順列に$6$個の行列の積$P_1 Q_2 Q_3 Q_4 Q_5 Q_6$を対応させる.このようにして得られる行列のうち,異なるものはいくつあるか.
スポンサーリンク

「重複」とは・・・

 まだこのタグの説明は執筆されていません。