タグ「部分」の検索結果

88ページ目:全894問中871問~880問を表示)
津田塾大学 私立 津田塾大学 2010年 第4問
$x \geqq 0$の範囲で関数$y=\sqrt{x}e^{-x}$のグラフを$C$とする.

(1)$C$の概形を描け.ただし$\displaystyle \lim_{x \to \infty} \sqrt{x}e^{-x}=0$は証明せずに使ってよい.
(2)$M>0$とする.曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる立体のうち,$x \leqq M$の部分の体積$V(M)$を求めよ.
(3)極限値$\displaystyle \lim_{M \to \infty}V(M)$を求めよ.
北海道医療大学 私立 北海道医療大学 2010年 第3問
関数$f(x)=x^2-1$と$g(x)=2a-f(x)$がある.ただし,$a$は定数とする.

(1)方程式$f(x)-g(x)=0$が異なる$2$つの実数解を持ち,かつ,それらが$-1$より大きいとき,$a$の値の範囲を求めよ.また,このとき,方程式$f(x)-g(x)=0$の解を求めよ.
(2)$a$が$(1)$で求めた範囲にあるとし,座標平面上に$y=f(x)$のグラフと$y=g(x)$のグラフがあるとする.

\mon[$(2$-$1)$] $y=f(x)$のグラフと$y=g(x)$のグラフとで囲まれる部分の面積$S_1$を$a$を用いて表せ.
\mon[$(2$-$2)$] $y=f(x)$のグラフと$y=g(x)$のグラフの共有点のうち,$x$座標が負である共有点を$\mathrm{P}$とする.このとき,直線$x=-1$,$\mathrm{P}$を通り$y$軸に平行な直線,$y=f(x)$のグラフ,および,$y=g(x)$のグラフとで囲まれる部分の面積$S_2$を$a$を用いて表せ.
\mon[$(2$-$3)$] 面積の和$S=S_1+S_2$を$a$を用いて表せ.
\mon[$(2$-$4)$] $(1)$で求めた範囲内で$a$を変化させたとき,$S$の最小値とその最小値を与える$a$の値を求めよ.
東京女子大学 私立 東京女子大学 2010年 第7問
$2$つの曲線$y=e^x$と$y=a \sqrt{x}$の共有点が$1$個であるとき,次の問いに答えよ.

(1)定数$a$と共有点の座標を求めよ.
(2)この$2$つの曲線と$y$軸で囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
玉川大学 私立 玉川大学 2010年 第1問
次の$[ ]$を埋めよ.

(1)曲線$y=x^2+2x$と$x$軸とで囲まれる部分の面積は$\displaystyle \frac{[ ]}{[ ]}$である.

(2)直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=3$,$\mathrm{CA}=4$,$\angle \mathrm{BAC}=\theta$とするとき,$\displaystyle \cos \theta=\frac{[ ]}{[ ]}$,$\displaystyle \sin \theta=\frac{[ ]}{[ ]}$,$\displaystyle \tan \theta=\frac{[ ]}{[ ]}$である.

(3)次の計算をせよ.


(i) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{2}}}{\sqrt{2}-\displaystyle\frac{1}{\sqrt{2}}}=\sqrt{[ ]}-[ ]$

(ii) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{5}}}{\sqrt{5}-\displaystyle\frac{1}{\sqrt{5}}}=\frac{\sqrt{[ ]}-[ ]}{[ ]}$

(iii) $\displaystyle \frac{1}{1-\displaystyle\frac{1}{1+\sqrt{2}+\sqrt{3}}}=[ ]-\sqrt{[ ]}+\sqrt{[ ]}$


(4)$x \neq 0$とするとき,$\displaystyle k=x+\frac{1}{x}$のとり得る値の範囲は,$k \leqq [ ]$,または$k \geqq [ ]$である.
広島工業大学 私立 広島工業大学 2010年 第3問
放物線$C:y=x^2+a$があり,直線$\ell:y=2bx$は$C$の接線である.ただし,$a$と$b$は定数で$b>0$とする.

(1)$a$を$b$で表せ.
(2)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1$を$b$を用いて表せ.
(3)$C$と$\ell$の接点から$x$軸へ下ろした垂線と$\ell$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,$S_2$と$(2)$で求めた$S_1$の比の値$\displaystyle \frac{S_2}{S_1}$を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第3問
放物線$y=x^2+2x+4$に原点から$2$本の接線を引くとき,放物線と$2$本の接線で囲まれる部分の面積を求めよ.
愛知県立大学 公立 愛知県立大学 2010年 第4問
原点をOとする座標平面上に2点P$(a,\ c)$およびQ$(b,\ d)$をとり,$\triangle$OPQを考える.線分OPが$x$軸の正の部分となす角を$\theta$とする.ただし,$\theta$は時計の針の回転と逆の向きを正とする.このとき,以下の問いに答えよ.

(1)$\sin \theta$と$\cos \theta$を$a,\ c$の式で表せ.
(2)点Qを原点の周りに$-\theta$だけ回転させた点を$(x,\ y)$とするとき,$x,\ y$を$a,\ b,\ c,\ d$で表せ.
(3)$\triangle$OPQの面積を$a,\ b,\ c,\ d$で表せ.
(4)一次変換
\[ A=\biggl( \begin{array}{cc}
\sqrt{2}+\sqrt{5} & 3 \\
1 & \sqrt{2}-\sqrt{5}
\end{array} \biggr) \]
によって,点P,Qがそれぞれ点P$^\prime$,Q$^\prime$に移されるものとする.$\triangle$OP$^\prime$Q$^\prime$の面積は$\triangle$OPQの何倍か.
兵庫県立大学 公立 兵庫県立大学 2010年 第1問
関数$f(x)=(1-x)e^{2x}$について,次の問いに答えよ.

(1)曲線$C:y=f(x)$の変曲点を求めよ.
(2)上で求めた変曲点と点$(1,\ 0)$とを通る直線を$\ell$とする.曲線$C$と直線$\ell$とで囲まれる部分の面積を求めよ.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。