タグ「部分」の検索結果

78ページ目:全894問中771問~780問を表示)
関西学院大学 私立 関西学院大学 2011年 第4問
関数$f(x)=x^{-2} \log x (x>0)$について次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)曲線$y=f(x)$上の点$(p,\ f(p))$における接線の方程式を求めよ.また,原点を通る接線$\ell$の方程式を求めよ.
(4)$m \neq -1$に対して,不定積分$\displaystyle \int x^m \log x \, dx$を求めよ.また,曲線$y=f(x)$,直線$\ell$,および$x$軸で囲まれる部分の面積$S$を求めよ.
獨協大学 私立 獨協大学 2011年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)式$(x-2y+3z)^2$を展開したとき,$y^2$の係数は$[$1$]$であり,$yz$の係数は$[$2$]$である.
(2)下の図の斜線部分は$3$つの不等式$[$3$]$,$[$4$]$,$[$5$]$で表される.ただし,境界線は含まないものとする.
(図は省略)
(3)$2$つの複素数$2+\sqrt{3}i$,$2-\sqrt{3}i$を解とする$2$次方程式の$1$つは
\[ x^2-[$6$]x+[$7$]=0 \]
である.
(4)$108$を素因数分解すると,$2$の$[$8$]$乗と$3$の$[$9$]$乗の積として表すことができる.したがって,$108$の正の約数は全部で$[$10$]$個である.
(5)当たりくじ$3$本を含む$10$本のくじがある.引いたくじはもとに戻さないものとして,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がこの順に$1$本ずつくじを引く.このとき$3$人のうちで$\mathrm{B}$と$\mathrm{C}$の$2$人だけが当たる確率は$[$11$]$であり,$3$人のうちで$\mathrm{B}$か$\mathrm{C}$のどちらか$1$人だけが当たる確率は$[$12$]$である.
(6)$a_{n+1}-a_n=1$,$a_1=0$と定められた数列の一般項は$[$13$]$である.また,$a_{n+1}-a_n=n$,$a_1=0$と定められた数列の一般項は$[$14$]$である.
(7)式$\sqrt{7+2 \sqrt{10}}+\sqrt{13-4 \sqrt{10}}$を簡単にすると$[$15$]$,式$\sqrt{8+2 \sqrt{15}}+\sqrt{5+2 \sqrt{6}}$を簡単にすると$[$16$]$である.
(8)$2$次関数
\[ y=ax^2+2ax+b \quad (a<0) \]
の定義域を$|x| \leqq 2$,値域を$|y| \leqq 9$とする.このとき,$a=[$17$]$で,$b=[$18$]$である.
神戸薬科大学 私立 神戸薬科大学 2011年 第4問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)放物線$C_1:y=x^2$,$C_2:y=-(x-a)^2+b$がある.$C_1$と$C_2$が点$(2,\ 4)$を共有し,その点における接線が一致するとき,$a=[ ]$,$b=[ ]$である.このとき,$C_1$と$C_2$および$y$軸で囲まれる部分の面積は$[ ]$である.
(2)薬剤$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を開発し,$100$種類の病原体に対する有効性を調べた.薬剤$\mathrm{A}$は$36$種類,薬剤$\mathrm{B}$は$57$種類,薬剤$\mathrm{C}$は$24$種類の病原体にそれぞれ有効であった.また,薬剤$\mathrm{A}$,$\mathrm{B}$ともに有効であった病原体は$11$種類,薬剤$\mathrm{B}$,$\mathrm{C}$ともに有効であった病原体は$9$種類,薬剤$\mathrm{A}$,$\mathrm{C}$ともに有効であった病原体は$8$種類であった.さらに,薬剤$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれも有効でなかった病原体は$8$種類であった.以下の問に答えよ.

(i) すべての薬剤が有効である病原体は$[ ]$種類である.
(ii) $2$種類の薬剤だけが有効な病原体は$[ ]$種類である.
(iii) $1$種類の薬剤のみが有効な病原体は$[ ]$種類である.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
関西学院大学 私立 関西学院大学 2011年 第3問
$xy$平面において,$2$つの放物線$y=x^2$と$y=2x^2-3x+2$の$2$つの共有点のうち$x$座標が小さい方を$\mathrm{A}$,大きい方を$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$,点$\mathrm{B}$の座標を求めよ.
(2)$2$つの放物線と直線$x=\sqrt{3}$で囲まれ,$x \leqq \sqrt{3}$の範囲にある部分の面積を求めよ.
(3)放物線$y=x^2$上の点$(p,\ p^2)$における放物線$y=x^2$の接線の方程式と,放物線$y=2x^2-3x+2$上の点$(q,\ 2q^2-3q+2)$における放物線$y=2x^2-3x+2$の接線の方程式を求めよ.
(4)$(3)$において,$2$つの接線が一致し,$p$が点$\mathrm{A}$の$x$座標より小さいとする.$p$の値を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
放物線$y=x^2$を$C$とし,直線$y=mx+n$を$\ell$とする.$C$と$\ell$は,異なる$2$点$(\alpha,\ \alpha^2)$,$(\beta,\ \beta^2)$で交わっている.ただし,$\alpha<\beta$とする.

(1)$C$と$\ell$で囲まれた部分の面積を$\alpha,\ \beta$で表せ.
(2)$C$と$\ell$で囲まれた部分の面積が$\displaystyle \frac{9}{2}$であり,かつ$m \geqq 0$,$n \geqq 0$であるような整数の組$(m,\ n)$をすべて求めよ.
津田塾大学 私立 津田塾大学 2011年 第4問
次の問いに答えよ.

(1)$t$に関する関数$\displaystyle x=\frac{e^t+e^{-t}}{2} (t \geqq 0)$のグラフをかけ.
(2)$\displaystyle x=\frac{e^t+e^{-t}}{2} (t \geqq 0)$のとき,$\sqrt{x^2-1}$を$t$を用いて表せ.
(3)$\mathrm{O}$を原点とし,点$\mathrm{P}(a,\ b)$を双曲線$x^2-y^2=1$上にある第$1$象限内の点とする.$\displaystyle a=\frac{e^s+e^{-s}}{2} (s>0)$のとき,線分$\mathrm{OP}$と双曲線$x^2-y^2=1$と$x$軸とで囲まれた部分の面積を,$s$を用いて表せ.
大阪市立大学 公立 大阪市立大学 2011年 第1問
$a$は実数で$0 < a < 1$とする.座標平面上の第$1$象限にある曲線$\displaystyle y =\frac{1}{x}$と$2$直線$y = x,\ y = ax$で囲まれる部分$P(a)$の面積を$S(a)$とする.次の問いに答えよ.

(1)$S(a)$を$a$を用いて表せ.
(2)$\displaystyle 2S(\frac{1}{e}) \leqq S(a) \leqq 2S(\frac{1}{e})+1$となる$a$の範囲を求めよ.
(3)$P(a)$を$x$軸の周りに回転して得られる回転体の体積$V(a)$と$\displaystyle \lim_{a \to 0} V(a)$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第3問
関数$\displaystyle f(x)=\frac{2(\log x)^2-3\log x}{x} \ (x>0)$について,次の各問に答えよ.ただし$\log x$は自然対数である.

(1)方程式$f(x)=0$を解け.
(2)関数$f(x)$の極大値と極小値を求めよ.また,そのときの$x$の値をそれぞれ求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
愛知県立大学 公立 愛知県立大学 2011年 第3問
曲線$C_1:y=p \cos x$,$C_2:y=q \sin x$について,以下の問いに答えよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2},\ p>0,\ q>0$である.

(1)曲線$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$p,\ q$で表せ.
(2)曲線$C_1,\ C_2$と$x$軸で囲まれた部分の面積を$S$とするとき,$S$を$p,\ q$で表せ.
(3)$p,\ q$が$p^2+q^2=4$を満たすとき,(2)で求めた面積$S$の最大値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。