タグ「部分」の検索結果

76ページ目:全894問中751問~760問を表示)
南山大学 私立 南山大学 2011年 第2問
座標平面上に放物線$C:y=x^2$と$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(-p,\ p^2)$,$\mathrm{R}(-p,\ p^2+2p)$,$\mathrm{S}(p,\ p^2+2p)$がある.また,$3$次関数$y=f(x)$は$x=-p$で極小値$p^2$,$x=p$で極大値$p^2+2p$をとる.ただし,$p>0$とする.

(1)$C$と線分$\mathrm{PQ}$で囲まれた部分の面積と正方形$\mathrm{PQRS}$の面積が等しくなる$p$の値を求めよ.
(2)$f(x)$を$p$で表せ.
(3)$\mathrm{P}$における$C$の接線を$\ell$とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線が$\ell$と垂直になるとき,$a$を$p$で表せ.
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
甲南大学 私立 甲南大学 2011年 第3問
$a$は実数とする.多項式$f(x),\ g(x)$が
\[ f(x)=ax^2+x+\int_0^1 g(t) \, dt,\quad g(x)=-x^2+2x+\int_{-1}^1 f(t) \, dt \]
を満たすとき,以下の問いに答えよ.

(1)$\displaystyle \int_0^1 g(t) \, dt,\ \int_{-1}^1 f(t) \, dt$の値を$a$を用いて表せ.
(2)方程式$f(x)=g(x)$が実数解をもつときの$a$の値の範囲を求めよ.
(3)$\displaystyle g \left( \frac{2}{3} \right)=0$のとき,$2$つの関数$y=f(x)$,$y=g(x)$のグラフで囲まれる部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
名城大学 私立 名城大学 2011年 第4問
曲線$y=a \log x (a>0)$と$x$軸および直線$x=e$で囲まれた部分を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.ただし,$e$は自然対数の底とする.

(1)$D$を図示せよ.
(2)$\displaystyle \int_1^e \log x \, dx$を求めよ.
(3)$V_1$と$V_2$を求めよ.
(4)$V_1=V_2$となるときの$a$の値を求めよ.
名城大学 私立 名城大学 2011年 第2問
放物線$C_1$を$y=(x+1)^2+1$とする.$C_1$を$y$軸に関して対称移動した放物線を$C_2$とし,$C_1$を$x$軸に関して対称移動した放物線を$C_3$とする.次の各問に答えよ.

(1)$C_2$の方程式と$C_1$,$C_2$の交点$\mathrm{P}$の座標を求めよ.
(2)$C_3$を平行移動して得られる曲線で,頂点が$\mathrm{P}$となる放物線を$C_4$とする.$C_4$の方程式を求めよ.
(3)$3$つの放物線$C_1$,$C_2$,$C_4$によって囲まれる部分の面積を求めよ.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$\displaystyle x^3+\frac{1}{x^3}=[イ]$である.
(2)$x^2-x+y-6=0$,$y \geqq 0$のとき,$6x+y$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)$a>0$とする.円$x^2+y^2-2ax-4ay+4a^2-1=0$が$x$軸と接するとき,$a=[オ]$であり,直線$x+y-1=0$と接するとき,$a=[カ]$である.
(4)放物線$C:y=x^2-2$と直線$\ell:y=x$がある.$C$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C$と$\ell$によって囲まれる部分の面積は$[ク]$である.
名城大学 私立 名城大学 2011年 第4問
$xy$平面上に,$2$つの放物線
\[ \begin{array}{l}
C_1:y=x^2 \\
C_2:y=-x^2+ax+b \quad (a,\ b \text{は実数})
\end{array} \]
があり,$C_2$の頂点を$\mathrm{P}$とする.

$C_1$,$C_2$は異なる$2$点で交わり,このとき,$C_1$と$C_2$で囲まれる部分の面積を$S$とする.
(1)$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$C_2$が$S=9$を満たして動くとき,$\mathrm{P}$がえがく軌跡を求めよ.
名城大学 私立 名城大学 2011年 第4問
$xy$平面上に,$2$つの放物線
\[ \begin{array}{l}
C_1:y=x^2 \\
C_2:y=-x^2+ax+b \quad (a,\ b \text{は実数})
\end{array} \]
があり,$C_2$の頂点を$\mathrm{P}$とする.

$C_1$,$C_2$は異なる$2$点で交わり,このとき,$C_1$と$C_2$で囲まれる部分の面積を$S$とする.
(1)$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$C_2$が$S=9$を満たして動くとき,$\mathrm{P}$がえがく軌跡を求めよ.
明治大学 私立 明治大学 2011年 第3問
空欄$[オ]$,$[カ]$,$[キ]$に当てはまるものを解答群の中から選び,それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

座標平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=-x^2-8x-8$,$C_3:y=-x^2+ax+b$がある.$C_1$と$C_3$は$t>0$の範囲にただ$1$つの共有点$(t,\ t^2)$を持ち,直線$\ell$は点$\mathrm{P}$で$C_2$に接し,なおかつ点$\mathrm{Q}$で$C_3$に接しているとする.次の問に答えよ.

(1)$C_1$と$C_2$の共有点は$\displaystyle \left( -[ア],\ [イ] \right)$である.また,$C_1$と$C_3$もただ$1$つの共有点を持つことから$a=[ウ]t$,$b=-[エ]t^2$である.
(2)点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とする.$\ell$は点$\mathrm{P}$における$C_2$の接線および点$\mathrm{Q}$における$C_3$の接線に等しい.これら$2$つの接線の傾きおよび$y$軸との交点がともに等しいことから
\[ \beta-\alpha=[オ],\quad \beta^2-\alpha^2=[カ] \]
が成り立つ.したがって,$\beta+\alpha=[キ]$である.これより,直線$\ell$の方程式は
\[ y=\left( t-[ク] \right) x+\frac{t^2+[ケコ]t+[サ]}{[シ]} \]
である.
(3)$C_3$と$x$軸によって囲まれる部分の面積を$S_1$,$C_1$と直線$\ell$によって囲まれる部分の面積を$S_2$とすると,


$\displaystyle S_1=\frac{\sqrt{[ス]}}{[セ]} \cdot [ソ]t^3$

$\displaystyle S_2=\frac{\sqrt{[ス]}}{[セ]} \cdot \left( t+[タ] \right)^3$


である.$S_1-S_2$は$\displaystyle t=\frac{[チ]+[ツ] \sqrt{[テ]}}{[ト]}$のときに最小値をとる.

オ,カ,キの解答群
\[ \begin{array}{lllll}
\nagamarurei t+2 & \nagamaruichi t-2 & \nagamaruni 2t+4 & \nagamarusan t+\sqrt{2} & \nagamarushi t-\sqrt{2} \\
\nagamarugo t^2-2 & \nagamaruroku t^2-4 & \nagamarushichi t^2-8 & \nagamaruhachi 2t^2-4 & \nagamarukyu 2t^2-8
\end{array} \]
(図は省略)
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。