タグ「部分」の検索結果

75ページ目:全894問中741問~750問を表示)
東京海洋大学 国立 東京海洋大学 2011年 第2問
関数$f(x)=ax^2+bx+c$に対して次の等式が成り立っているとする.
\[ f^\prime(x)=x \int_{-2}^1 f(t) \, dt+\int_0^1 tf^\prime(t) \, dt \]
このとき,次の問に答えよ.ただし,$a,\ b,\ c$は定数で$a>0$とする.

(1)$b,\ c$を$a$で表せ.
(2)曲線$y=f(x)$の$\displaystyle x \geqq -\frac{1}{2}$の部分と$x$軸および$y$軸とで囲まれた図形の面積が$1$のとき,$a$の値を求めよ.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)$z^2 = -2i$のとき,$z$を求めると,
\[ z= [ア]-[イ]i,\ z=-[ウ]+[エ]i \]
である.ただし,$i^2=-1$である.
(2)$2$次方程式$x^2-px+p-1=0$の$2$つの解の比が$1:3$であるとき,
\[ \text{定数}p\text{の値は}[ア],\ \text{または}\frac{[イ]}{[ウ]}\text{である} \]
(3)不等式$\log_{0.5}(5-x)<2\log_{0.5}(x-3)$の解は,
\[ [ア]<x<[イ] \]
である.
(4)放物線$y=ax^2 (a>0)$と直線$y=bx (b>0)$とで囲まれた部分の面積を$S_1$とし,交点をそれぞれ$\mathrm{O}$(原点),$\mathrm{A}$とする.$\mathrm{A}$から$x$軸に垂線$\mathrm{AH}$を下ろし,$\triangle \mathrm{AOH}$の面積を$S_2$とすると,
\[ \frac{S_1}{S_2} = \frac{[ア]}{[イ]} \]
である.
(5)事象$\mathrm{A}$の起こる確率が$\displaystyle\frac{4}{5}$,事象$\mathrm{B}$の起こる確率が$\displaystyle\frac{3}{5}$,事象$\mathrm{A}$と事象$\mathrm{B}$のどちらか一方だけが起こる確率が$\displaystyle\frac{2}{5}$であるとする.このとき,事象$\mathrm{A}$と事象$\mathrm{B}$がともに起こる確率は$\displaystyle\frac{[ア]}{[イ]}$である.
(6)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{E}$とし,$\mathrm{CD}$と$\mathrm{BE}$との交点を$\mathrm{O}$とするとき,
\[ \overrightarrow{\mathrm{OD}} = \frac{[ア]}{[イ]}\overrightarrow{\mathrm{CA}} + \frac{[ウ]}{[エ]}\overrightarrow{\mathrm{CB}} \]
である.
明治大学 私立 明治大学 2011年 第3問
次の各設問の$[13]$から$[16]$までの空欄を埋めよ.

$2$つの放物線$C_1: y=x^2+3x+2$,$C_2:y=-x^2+4x+2$と直線$\ell:y=ax+2$($a$は定数)を考える.直線$\ell$は,放物線$C_1,\ C_2$とそれぞれ異なる$2$点で交わるとする.ここで,$C_1$と$\ell$で囲まれた部分の面積と$C_2$と$\ell$で囲まれた部分の面積の和を$S$とする.

(1)放物線$C_1$と直線$\ell$の交点の$x$座標は$[13]$である.
(2)$a=5$のとき,$S=[14]$である.
(3)$a=[15]$のとき$S$は最小となり,そのときの$S$は$[16]$である.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
立教大学 私立 立教大学 2011年 第1問
$f(x)=x^3+3x^2+4$とするとき,座標平面上の曲線$y=f(x)$について,次の問に答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)点$(t,\ f(t))$における曲線$y=f(x)$の接線の方程式を求めよ.
(3)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$3$本あるような$a$の範囲を求めよ.
(4)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$2$本あるような最小の$a$に対して,$2$本の接線と曲線$y=f(x)$で囲まれる部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第5問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
$f(x)=2x^3+12x^2+18x+9$とおくとき,関数$y=f(x)$のグラフは点$\mathrm{A}$に関して点対称である.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$の座標を求めよ.
(2)直線$\ell$が関数$y=f(x)$のグラフと$3$点で交わる条件を求めよ.
(3)関数$y=f(x)$のグラフと直線$\ell$で囲まれた$2$つの部分の面積の和が$1$となるような$m$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。