タグ「部分」の検索結果

71ページ目:全894問中701問~710問を表示)
香川大学 国立 香川大学 2011年 第3問
曲線$C:y=e^{-x}|\sin x| \ (x \geqq 0)$がある.このとき,次の問に答えよ.

(1)$\displaystyle I=\int e^{-x} \sin x \, dx,\ J=\int e^{-x} \cos x \, dx$とおく.$I,\ J$をそれぞれ部分積分して,$I$を求めよ.
(2)$2n \pi \leqq x \leqq (2n+1)\pi \ (n=0,\ 1,\ 2,\ \cdots)$の範囲で,曲線$C$と$x$軸で囲まれる図形の面積$S_{2n}$を求めよ.
(3)$(2n+1) \pi \leqq x \leqq 2(n+1)\pi \ (n=0,\ 1,\ 2,\ \cdots)$の範囲で,曲線$C$と$x$軸で囲まれる図形の面積$S_{2n+1}$を求めよ.
(4)曲線$C$と$x$軸で囲まれる図形の面積$\displaystyle \sum_{k=0}^\infty S_k$を求めよ.
鳥取大学 国立 鳥取大学 2011年 第3問
曲線$C:y=\log x \ (x>0)$について,次の問いに答えよ.ただし,$\log x$は$x$の自然対数である.

(1)不定積分$\displaystyle \int \log x \, dx$を求めよ.
(2)原点から曲線$C$に引いた接線$\ell$の方程式および接点の座標を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分の面積を求めよ.
(4)曲線$C$と(2)で求めた接線$\ell$および$x$軸とで囲まれた部分を$x$軸の周りに1回転してできる立体の体積を求めよ.
熊本大学 国立 熊本大学 2011年 第3問
2つの放物線$\displaystyle C_1:y=x^2,\ C_2:y=-x^2+2x-\frac{1}{2}$を考える.点A$\displaystyle \left(t,\ -t^2+2t-\frac{1}{2} \right)$における$C_2$の接線を$\ell$とする.以下の問いに答えよ.

(1)$\ell$と$C_1$との交点の$x$座標を,$t$を用いて表せ.
(2)点Aの$x$座標を$\displaystyle t=1+\frac{\sqrt{2}}{2}$とするとき,第1象限において$\ell,\ C_1$および$y$軸で囲まれた部分の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第4問
原点から曲線$C:y=e^{2x}$へひいた接線と$C$との接点をP$(a,\ b)$とするとき,以下の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)点$(0,\ 1)$から点Pまで曲線$C$に沿って点Qが動く.$C$の点Qにおける接線を$\ell$,点Pから$x$軸に下ろした垂線と$\ell$との交点をHとし,Qの$x$座標を$t$とする.$0 \leqq x \leqq a$の範囲で曲線$C$より下,かつ,直線$\ell$より上の部分の面積を$S(t)$とするとき,$0<t<a$における$S(t)$の最小値と,そのときの$t$の値を求めよ.
佐賀大学 国立 佐賀大学 2011年 第3問
次の問いに答えよ.

(1)正方形$\mathrm{ABCD}$が図のように3つの線分$\mathrm{EG}$,$\mathrm{FH}$,$\mathrm{CG}$に \\
よって4つの部分に分割されている.四角形$\mathrm{AEGH}$は面積 \\
が400の正方形になり,三角形$\mathrm{FCG}$は面積が8になる. \\
このとき,正方形$\mathrm{ABCD}$の面積を求めよ.
\img{711_2922_2011_1}{30}

(2)「2116の正の平方根を求めよ」という問題に対して \\
以下のような答案があった.この答案の意図を解説せよ. \\
(答案) \quad まず$40^2<2116<50^2$なので,$2116-40^2=516$を出す.次に516を2で割って258が出る.この258を40で割ると商が6で余りが18になる.さらに余りの18に2をかければ$36=6^2$となり商の2乗が出る. \\
最後に$40^2$と$6^2$とから$40+6=46$が得られる.以上により,求める答えは46になる.
愛知教育大学 国立 愛知教育大学 2011年 第6問
$\theta$を$0 \leqq \theta \leqq \pi$をみたす実数とする.単位円上の点Pを,動径OPと$x$軸の正の部分とのなす角が$\theta$である点とし,点Qを$x$軸の正の部分の点で,点Pからの距離が2であるものとする.また,$\theta=0$のときの点Qの位置をAとする.

(1)線分OQの長さを$\theta$を使って表せ.
(2)線分QAの長さを$L$とするとき,極限値$\displaystyle \lim_{\theta \to 0}\frac{L}{\theta^2}$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
岐阜大学 国立 岐阜大学 2011年 第5問
放物線$y=x^2+4x$を$C$とする.$C$上の$x$座標が$p$である点における接線を$\ell$とする.ただし,$p$は正の定数とする.以下の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を通る$C$の接線を$m$とする.ただし,$m$と$\ell$は異なるとする.$m$の方程式を求めよ.
(3)放物線$C$と接線$\ell$および$y$軸とで囲まれた部分の面積を$S$とし,放物線$C$と接線$m$および$y$軸とで囲まれた部分の面積を$T$とする.$\displaystyle \frac{T}{S}$の値は$p$によらず一定となることを示せ.
東京学芸大学 国立 東京学芸大学 2011年 第4問
長さ2の線分ABを直径とする半円の弧AB上に点Pをとる.このとき,下の問いに答えよ.

(1)線分ABの中点をOとし,$\angle \text{POB}=\theta$とするとき,弧APと弦APで囲まれる部分の面積を$\theta$で表せ.
(2)弦APがこの半円の面積を2等分するとき,不等式$2 \koa{BP}<\koa{AP}<3 \koa{BP}$が成り立つことを示せ.ただし,$\koa{AP},\ \koa{BP}$は弧AP,弧BPの長さを表す.
岐阜大学 国立 岐阜大学 2011年 第1問
下の図のように,$xy$平面上に,$x$軸に平行な道,$y$軸に平行な道,直線$y=-x$に平行な道があるものとする.これらの道を通って,原点Oから点A$(4,\ 4)$まで行くとき,以下の各場合に道順の総数を求めよ.
\setlength\unitlength{1truecm}

(図は省略)



(1)最短経路で行く場合.
(2)点B$(2,\ 2.5)$を通らずに,最短経路で行く場合.
(3)点C$(-1,\ 2)$を通り,道のりが$8+\sqrt{2}$になる場合.
(4)道のりが$8+\sqrt{2}$になる場合.
(5)$0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$の部分だけを通り,道のりが$8+\sqrt{2}$になる場合.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。