タグ「部分」の検索結果

7ページ目:全894問中61問~70問を表示)
山梨大学 国立 山梨大学 2016年 第2問
曲線$C_1:y=(x-a)^2-4$と直線$\ell:y=2x-7$が点$\mathrm{P}$で接している.曲線$C_2$は,$y=-x^2$を平行移動した曲線で,$\mathrm{P}$を通り,直線$y=6$の$x<0$の部分に接している.ただし,$a$は実数とする.

(1)$a$の値を求めよ.
(2)$C_2$の方程式を求め,$C_1$と$C_2$の共有点の座標をすべて求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積$S$を求めよ.
山梨大学 国立 山梨大学 2016年 第3問
関数$f(x)=x \sqrt{4-x^2}$に対し,曲線$y=f(x)$を$C$とする.

(1)$f(x)$の増減を調べよ.ただし,$f(x)$の第$2$次導関数を調べる必要はない.
(2)$C$上の点$(1,\ \sqrt{3})$における接線$\ell$の方程式を求めよ.
(3)$C$の$0 \leqq x \leqq \sqrt{2}$の部分,直線$x=\sqrt{2}$および$x$軸で囲まれた図形の面積$S$を求めよ.
(4)$C$と$x$軸の$x \geqq 0$の部分で囲まれた図形を$D$とする.$D$を$y$軸の周りに$1$回転させてできる回転体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第1問
放物線$y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a>b$とする.直線$\mathrm{AB}$と放物線とで囲まれる部分の面積を$S$とする.下の問いに答えなさい.

(1)$a=b+1$とするとき,$S$を求めなさい.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$が$\displaystyle S=\frac{1}{6}$という条件を満たしながら動くとき,線分$\mathrm{AB}$の中点の軌跡を求めなさい.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第3問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$a=2$のとき$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第5問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
長崎大学 国立 長崎大学 2016年 第4問
区間$-1 \leqq x \leqq 1$において,$2$つの関数$f(x)=x+\sqrt{1-x^2}$,$g(x)=x-\sqrt{1-x^2}$を考える.曲線$C_1:y=f(x)$と曲線$C_2:y=g(x)$で囲まれた図形を$D$とする.以下の問いに答えよ.

(1)関数$f(x)$の増減を調べ,その最大値と最小値を求めよ.
(2)曲線$C_1$は曲線$C_2$と原点に関して対称であることを示せ.
(3)区間$-1 \leqq x \leqq 1$において,$f(x)$と$-g(x)$の値の大小関係を調べよ.また,$g(x) \geqq 0$が成り立つような$x$の範囲を求めよ.
(4)図形$D$の$x \geqq 0$の部分を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。