タグ「部分」の検索結果

69ページ目:全894問中681問~690問を表示)
福岡女子大学 公立 福岡女子大学 2012年 第3問
実数$t$を$0<t \leqq 1$とし,図$1$の斜線部分の図形$A$の面積を$S(t)$で表す.次の問に答えなさい.

(1)$S(t)$を$t$の式で表しなさい.
(2)図$2$,図$3$を参考にして,不等式
\[ (1-\sqrt{t})^2 \leqq S(1)-S(t) \leqq (1-t)^2 \]
が成り立つことを示しなさい.
(3)(2)の不等式を参考にして,不等式
\[ 2(t-\sqrt{t}) \leqq t \log t \leqq t(t-1) \]
が成り立つことを示しなさい.
(図は省略)
和歌山県立医科大学 公立 和歌山県立医科大学 2012年 第2問
区間$[-1,\ 1]$で,曲線$y=|x|e^{|x|}$と直線$\ell:y=a (0 \leqq a \leqq e)$の間にある部分の面積を$S$とする.

(1)曲線$y=xe^x (x \geqq 0)$と$\ell$の交点の$x$座標を$t$とし,$S$を$t$の式で表せ.
(2)$S$の最大値と最小値,およびそれらをとる$a$の値を求めよ.
大阪大学 国立 大阪大学 2011年 第2問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2+q$とおく.

(1)放物線$y=f(x)$が点$(0,\ 1)$を通り,しかも直線$y=x$の$x>0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1),\ (p_2,\ q_2)$に対して,$f_1(x)=(x-p_1)^2+q_1$および$f_2(x)=(x-p_2)^2+q_2$とおく.実数$\alpha,\ \beta \quad (\text{ただし}\alpha < \beta)$に対して
\[ f_1(\alpha)<f_2(\alpha) \quad \text{かつ} f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R: 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y=f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y=f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第2問
$xy$平面上の曲線$y=x^2$を$C$とする.点P$_0(2,\ 4)$における$C$の接線が直線$y=2$と交わる点をQ$_1(a_1,\ 2)$とする.次に,点P$_1(a_1,\ {a_1}^2)$における$C$の接線が直線$y=a_1$と交わる点をQ$_2(a_2,\ a_1)$とする.以下同様に,点$(a_n,\ {a_n}^2)$をP$_n$とし,P$_n$における$C$の接線が$y=a_n$と交わる点をQ$_{n+1}(a_{n+1},\ a_n)$として,P$_2,\ \text{Q}_3,\ \text{P}_3,\ \text{Q}_4,\ \cdots$を定める.次の問いに答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を$n$の式で表せ.
(3)線分P$_n$Q$_{n+1}$,線分P$_{n+1}$Q$_{n+1}$,および$C$で囲まれる部分の面積を$n$の式で表せ.
埼玉大学 国立 埼玉大学 2011年 第1問
$2$つの放物線$y=x^2$および$y^2=8x$を考える.次の問いに答えよ.

(1)$2$つの放物線の共有点を求めよ.
(2)$2$つの放物線によって囲まれた部分を$S$とする.$S$の面積を求めよ.
(3)$S$を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
東北大学 国立 東北大学 2011年 第4問
放物線$y = x^2$ の$2$本の接線$\ell,\ m$は垂直であるとする.

(1)$\ell$の接点の座標が$(a,\ a^2)$で与えられるとき,$\ell,\ m$の交点の座標を$a$を用いて表せ.
(2)$\ell,\ m$が$y$軸に関して対称なとき,$\ell,\ m$および放物線$y = x^2$で囲まれる部分の面積を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
座標平面上に点P$(0,\ 0)$,M$(\sqrt{3},\ 1)$をとる.点Mを中心とし,$x$軸に接するように円を描き,接点をAとおく.Pより円にもう1本の接線を引き接点をBとする.円に2線分PAとPBをつけ加えた図形を$x$軸に接したまますべることなく$x$軸の正の方向にころがし,線分PBが$x$軸に重なるまで移動させる.次の問いに答えよ.

(1)移動中の円の中心の座標を$(\sqrt{3}+t,\ 1)$とする.$t$の取りうる値の範囲を求めよ.
(2)点Pの軌跡を$C$とする.$C$と$x$軸で囲まれた部分の面積を求めよ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
大阪大学 国立 大阪大学 2011年 第2問
実数$\theta$が動くとき,$xy$平面上の動点P$(0,\ \sin \theta)$およびQ$(8 \cos \theta,\ 0)$を考える.$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,平面内で線分PQが通過する部分を$D$とする.$D$を $x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
大阪大学 国立 大阪大学 2011年 第3問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2 +q$とおく.

(1)放物線$y = f(x)$が点$(0,\ 1)$を通り,しかも直線$y = x$の$x > 0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1)$,$(p_2,\ q_2)$に対して,$f_1(x) = (x-p_1)^2 + q_1$および$f_2(x) =(x-p_2)^2 +q_2$とおく.実数$\alpha,\ \beta \ $(ただし$\alpha < \beta$)に対して
\[ f_1(\alpha) < f_2(\alpha) \quad \text{かつ} \quad f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R : 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y = f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y = f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。