タグ「部分」の検索結果

67ページ目:全894問中661問~670問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
大同大学 私立 大同大学 2012年 第4問
$0<a<2$,$f(x)=x^2(x-2)$,$g(x)=a^2(x-2)$とする.

(1)曲線$y=f(x)$と直線$y=g(x)$の交点の$x$座標を求めよ.
(2)曲線$y=f(x)$と直線$y=g(x)$で囲まれる$2$つの部分の面積の和$S(a)$を求めよ.
(3)$S(a)$を最小にする$a$の値を求めよ.
大同大学 私立 大同大学 2012年 第5問
$\displaystyle f(x)=\sin 2x \log (2 \sin x) \left( \frac{\pi}{12} \leqq x \leqq \frac{3}{4} \pi \right)$とする.

(1)不定積分$\displaystyle \int t \log t \, dt$を求めよ.
(2)$2 \sin x=t$とおいて置換積分することにより,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$f(x) \geqq 0$をみたす$x$の範囲を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれる部分の面積を求めよ.
杏林大学 私立 杏林大学 2012年 第4問
座標平面上の点$\mathrm{P}(x,\ y)$が$t \geqq 0$に対して
\[ x=1-e^{-3t},\quad y=8-3t-8e^{-3t} \]
で表されるとき,以下の問いに答えよ.

(1)$t \to \infty$のとき$x$の極限値は
\[ \lim_{t \to \infty} x=[ア] \]
であり,$t=0$のとき
\[ \frac{dy}{dt}=[イウ] \]
となる.また,任意の$t$に対して

$\displaystyle \frac{d^2 x}{dt^2}+[エ] \frac{dx}{dt}=[オ]$,

$\displaystyle \frac{d^2 y}{dt^2}+[カ] \frac{dy}{dt}=[キク]$

が成り立つ.
(2)$\displaystyle \frac{dy}{dx}=0$となる$t$の値を$\alpha$とすると,$e^\alpha=[ケ]$となる.このときの$x$の値を$\beta$とすると,$\displaystyle \beta=\frac{[コ]}{[サ]}$であり,$y$の値は$[シ]-[ス] \alpha$である.
(3)$0 \leqq t \leqq \alpha$に対して点$\mathrm{P}$の描く曲線と,直線$x=\beta$および$x$軸で囲まれた部分の面積は$\displaystyle \frac{[セソ]}{[タチ]}+\frac{[ツ]}{[テ]} \alpha$となる.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{0.5^2-0.4^2}$を計算せよ.
(2)放物線$y=x^2+4x-1$を点$(1,\ 2)$に関して対称移動した放物線の方程式を求めよ.
(3)循環小数$2.0 \dot{3}$を分数で表せ.
(4)半径がそれぞれ$1$である$2$つの円が,一方の円周上に他方の円の中心があるような位置で重なっている.このとき,$2$つの円が重なっている部分の面積を求めよ.なお,円周率は$\pi$とする.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の問の$[$40$]$~$[$49$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積を考える.ただし$f(x)$は,等式
\[ f(x)=\frac{1}{4}x^2+\frac{15}{4} \int_{-2}^0 xf(t) \, dt-\frac{4}{3} \int_{-3}^3 \{f(t)+6\} \, dt \]
を満たし,直線$\ell$は$y=|f(x)|$の$x=8$における接線である.また直線$m$は,直線$\ell$と$y=|f(x)|$の交点と点$(1,\ 3)$の$2$点を通る,傾き負の直線である.

(1)$\displaystyle f(x)=\frac{[$40$]}{[$41$]}x^2-[$42$]x-[$43$]$である.

(2)直線$m$の方程式は$y=-[$44$]x+[$45$]$である.
(3)$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積は$\displaystyle \frac{[$46$][$47$][$48$]}{[$49$]}$である.
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
大阪市立大学 公立 大阪市立大学 2012年 第4問
$xy$平面において,$x$軸の$x < 0$である部分を$C_1$,$x$軸の$x>1$である部分を$C_2$とする.また,2点$(0,\ -1),\ (1,\ -1)$を結ぶ線分を$K$とする.$y>0$をみたす点$(x,\ y)$からは,$C_1$と$C_2$が障害となり,$C_1$と$C_2$の間を通してしか,$K$は見えないものとする.点$(s,\ 1)$から見える$K$の部分の長さを$f(s)$,点$(2,\ t)\ (t>0)$から見える$K$の部分の長さを$g(t)$とおく.ただし,$K$がまったく見えないとき,または,$K$の1点のみが見えるとき,$f(s),\ g(t)$の値は0とする.次の問いに答えよ.

(1)$f(s)$を求めよ.また,$s$が実数全体を動くとき,関数$f(s)$のグラフを描け.
(2)$g(t)$を求めよ.また,$t$が正の実数全体を動くとき,関数$g(t)$のグラフを描け.
首都大学東京 公立 首都大学東京 2012年 第2問
実数$m$が$m>-1$を満たすとき,直線$\ell:y=mx$と放物線$C:y=x^2-x$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)点$\mathrm{P}$における$C$の接線と点$\mathrm{Q}$における$C$の接線の交点を$\mathrm{R}$とする.このとき,$\mathrm{R}$の座標を求めなさい.
(2)$\ell$と$C$で囲まれた部分の面積を$S_1$とし,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を求めなさい.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。