タグ「部分」の検索結果

66ページ目:全894問中651問~660問を表示)
関西学院大学 私立 関西学院大学 2012年 第3問
$a$は$a>2$を満たす実数とする.$f(x)=x^3-a^2x$,$g(x)=-x^2+a^2$とおく.次の問いに答えよ.

(1)$xy$平面において,$y=f(x)$のグラフと$y=g(x)$のグラフは$3$つの共有点をもつことを示し,$3$つの共有点の座標をすべて求めよ.
(2)$y=f(x)$のグラフと$y=g(x)$のグラフの$3$つの共有点を,$x$座標の小さいほうから順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.点$\mathrm{B}$における$y=f(x)$の接線を$\ell$とし,$\ell$と$y=g(x)$のグラフとの共有点のうち点$\mathrm{B}$以外の点を$\mathrm{D}$とする.直線$\ell$の方程式と点$\mathrm{D}$の座標を求めよ.
(3)$y=g(x)$のグラフと直線$\ell$で囲まれ,$x \geqq 0$の範囲にある部分の面積を求めよ.
大阪産業大学 私立 大阪産業大学 2012年 第2問
直線$\ell:y=-3x+k$が,点$\mathrm{P}(1,\ 6)$および点$\mathrm{Q}$の$2$点で円$O:x^2+{(y-4)}^2=5$と交わり,点$\mathrm{Q}$で曲線$\displaystyle C:y=\frac{a}{x}+b$と接している.ここで$k,\ a,\ b$は定数とする.以下の各問いに答えよ.

(1)$k$の値を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)$a$と$b$の値を求めよ.
(4)直線$\ell$と曲線$C$,および直線$x=1$で囲まれた部分の面積$S$を求めよ.
獨協大学 私立 獨協大学 2012年 第3問
放物線$y=-x^2+1$上の点$(\alpha,\ -\alpha^2+1)$における接線を$\ell_1$とし,点$(\beta,\ -\beta^2+1)$における接線を$\ell_2$とする.ただし,$\alpha<0<\beta$で$\beta-\alpha=c$(一定)とする.

(1)接線$\ell_1$と$y$軸および放物線で囲まれる部分の面積$S_1$を$\alpha$で表せ.
(2)接線$\ell_2$と$y$軸および放物線で囲まれる部分の面積$S_2$を$\beta$で表せ.
(3)面積の和$S_1+S_2$が最小となるときの$\alpha,\ \beta$とそのときの最小値を$c$で表せ.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
大阪薬科大学 私立 大阪薬科大学 2012年 第3問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面に,点$\mathrm{A}(3,\ 4)$がある.$\mathrm{O}$を中心に反時計回りに$\displaystyle \frac{1}{4}\pi$だけ回転することで,$\mathrm{A}$は点$\mathrm{B}$に移る.

(1)$\overrightarrow{\mathrm{OA}}$と$x$軸の正の向きがなす角を$\alpha$とすると,$\tan \alpha=[$\mathrm{J]$}$である.
(2)$\overrightarrow{\mathrm{OB}}$の成分は$[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{OC}}=-2 \sqrt{2} \, \overrightarrow{\mathrm{OB}}$となる点$\mathrm{C}$を定め,$\mathrm{OA}$と$\mathrm{OC}$を$2$辺とする平行四辺形$\mathrm{OAPC}$を考える.また,$\mathrm{O}$と$\mathrm{P}$を通る直線を$\ell$とする.

(i) $\ell$の方程式は,$y=[$\mathrm{L]$}$である.
(ii) $3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る放物線と$\ell$で囲まれる部分の面積は,$[$\mathrm{M]$}$である.
(iii) $\mathrm{AP}$を$(1-t):t$に内分する点を$\mathrm{D}$,$\mathrm{CD}$と$\ell$の交点を$\mathrm{E}$とするとき,$\mathrm{DE}:\mathrm{EC}$を$[う]$で求めなさい.
久留米大学 私立 久留米大学 2012年 第2問
曲線$y=2 \tan^2 x$上の点$\displaystyle \left( \frac{\pi}{4},\ 2 \right)$における接線$\ell$の方程式は$y=[$3$]$であり,この曲線と接線$\ell$および$x$軸によって囲まれた部分の面積は$[$4$]$となる.ただし,$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.
久留米大学 私立 久留米大学 2012年 第7問
$f(x)=a \cos x$,$g(x)=\sin x$,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とする.曲線$y=f(x)$,$x$軸,$y$軸で囲まれた部分の面積を$S$,曲線$y=f(x)$,曲線$y=g(x)$,$y$軸で囲まれた部分の面積を$S_1$とする.

(1)曲線$y=f(x)$と曲線$y=g(x)$が$\displaystyle x=\frac{\pi}{6}$で交わるとき,$a=[$17$]$,$\displaystyle \frac{S_1}{S}=[$18$]$である.
(2)$\displaystyle \frac{S_1}{S}=\frac{2}{3}$のとき$a=[$19$]$となる.
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
愛知工業大学 私立 愛知工業大学 2012年 第2問
$a>0$とする.$xy$平面において,曲線$y=e^x$,$x$軸,$y$軸および直線$x=a$で囲まれた部分の面積を$S(a)$とする.ただし,$e$は自然対数の底である.

(1)$S(b)=2S(a)$となる$b (b>0)$を$a$の式で表せ.
(2)$(1)$の$b$に対して,$\displaystyle \lim_{a \to +0} \frac{b}{a}$を求めよ.
愛知工業大学 私立 愛知工業大学 2012年 第3問
$xy$平面において,点$(0,\ 2)$を中心とする半径$1$の円に外接し,さらに$x$軸に接する円の中心を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の$y$座標が$2$のとき,$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{P}$の軌跡$C$の方程式を求めよ.
(3)軌跡$C$,$x$軸,$y$軸および直線$x=2$で囲まれた部分の面積を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。