タグ「部分」の検索結果

65ページ目:全894問中641問~650問を表示)
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
北海道医療大学 私立 北海道医療大学 2012年 第3問
関数$f(x)=|x^2-4|$と$y$軸上の点$\mathrm{C}(0,\ 8)$を通る傾きが$k$である直線$\ell$について,以下の問に答えよ.ただし,$k$は定数とする.

(1)直線$\ell$の方程式を$k$を用いて表せ.

(2)$\displaystyle S(a)=\int_{-a}^a f(x) \, dx$とするとき,$S(2)$と$S(3)$を求めよ.

(3)$k=0$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(4)$k=4$であるとき,直線$\ell$と関数$f(x)$で囲まれる部分の面積を求めよ.
(5)$k$が範囲$0<k<4$にあるときの直線$\ell$と関数$f(x)$で囲まれる部分の面積を$k$を用いて表せ.
青山学院大学 私立 青山学院大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C$とする.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$を通り,傾き$-m (0<m<1)$の直線と曲線$C$の交点のうち,$\mathrm{A}$と異なる点を$\mathrm{B}$とする.点$\mathrm{B}$の座標,および線分$\mathrm{AB}$の長さ$l$を求めよ.
(2)直線$\mathrm{AB}$と曲線$C$によって囲まれた部分の面積$S$を求めよ.
(3)$m \to +0$のとき,$\displaystyle \frac{S}{l}$の極限値を求めよ.ただし,$\displaystyle \lim_{x \to +0}x \log x=0$であることを用いてよい.
広島工業大学 私立 広島工業大学 2012年 第2問
放物線$y=x^2+2ax+4a+12$について,次の問いに答えよ.ただし,$a$は定数とする.

(1)放物線の頂点の座標を$a$で表せ.
(2)放物線と$x$軸が接するとき,$a$の値とその接点の座標を求めよ.
(3)放物線と$x$軸の負の部分が共有点をもつとき,$a$の値の範囲を求めよ.
福岡大学 私立 福岡大学 2012年 第3問
$a>0$とし,放物線$C:y=x^2-ax$と$x$軸との共有点で,原点$\mathrm{O}$でない方の共有点を$\mathrm{P}$とする.また,$m>0$とし,直線$\ell:y=mx$と放物線$C$との共有点で,原点$\mathrm{O}$でない方の交点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)放物線$C$上の点$\mathrm{R}$における$C$の接線が直線$\ell$と平行であるとする.そのとき点$\mathrm{R}$と直線$\ell$との距離$d$を$a$と$m$を用いて表せ.
(2)$m=a$のとき,放物線$C$と$x$軸とで囲まれる部分の面積$S$は,三角形$\mathrm{ORQ}$の面積の何倍になるか求めよ.
福岡大学 私立 福岡大学 2012年 第4問
$0<k<2$とする.曲線$C:y=x^2$上を動く点$\mathrm{P}$と,直線$y=2k(x-1)$上を動く点$\mathrm{Q}$との距離が最小となるとき,点$\mathrm{P}$の座標を$k$の式で表すと$[ ]$である.このときの直線$\mathrm{PQ}$と曲線$C$とで囲まれる部分の面積が最小になる$k$の値を求めると,$k=[ ]$である.
福岡大学 私立 福岡大学 2012年 第9問
$\displaystyle f(x)=\frac{(\log x)^2}{x} (x>0)$とする.曲線$C:y=f(x)$上の点$\mathrm{P}(a,\ f(a))$と点$\mathrm{Q}(b,\ f(b))$における曲線$C$の$2$つの接線が共に原点を通るとき,次の問いに答えよ.ただし,$a<b$で,対数は自然対数とする.

(1)$a,\ b$の値と点$\mathrm{Q}(b,\ f(b))$における曲線$C$の法線の方程式を求めよ.
(2)点$\mathrm{P}(a,\ f(a))$における$C$の接線,点$\mathrm{Q}(b,\ f(b))$における$C$の法線,および曲線$C$によって囲まれる部分の面積を求めよ.
津田塾大学 私立 津田塾大学 2012年 第3問
放物線$y=x^2$を$C$とおき,$C$上の点$\mathrm{A}(a,\ a^2)$(ただし$a>0$)と点$\mathrm{B}(0,\ 1)$を通る直線を$\ell$とする.$C$と$\ell$で囲まれた領域の$x \geqq 0$の部分の面積を$f(a)$とし,$C$と$x$軸と直線$x=a$で囲まれた領域の面積を$g(a)$とする.$f(a)-g(a)$の最大値を求めよ.
津田塾大学 私立 津田塾大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x^2}$の$x>0$の部分を$C_1$とする.また,原点と$C_1$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p^2} \right)$を通る放物線を$C_2$とする.$C_1$と$C_2$が点$\mathrm{P}$において同一の直線に接するとき,次の問に答えよ.

(1)$C_2$の式を$p$を用いて表せ.
(2)$C_2$と$x$軸の交点のうち,原点でない方を$\mathrm{Q}$とおく.点$\mathrm{Q}$を通り$y$軸に平行な直線と,$C_1,\ C_2$で囲まれた領域の面積を求めよ.
昭和大学 私立 昭和大学 2012年 第4問
次の各問に答えよ.

(1)$2$つの曲線$\displaystyle y=\frac{1}{\sqrt{3}}x(x-\sqrt{3})$および$\displaystyle x=\frac{1}{\sqrt{3}}y(y-\sqrt{3})$がある.

(i) この$2$つの曲線の交点を求めよ.
(ii) この$2$つの曲線によって囲まれる部分の面積を求めよ.

(2)$\displaystyle \lim_{x \to \infty}(a \sqrt{2x^2+x+1}-bx)=2$が成り立つような実数$a,\ b$の値を求めよ.
(3)$x \geqq 0$のとき,$x$の関数$\displaystyle f(x)=\int_0^x 3^t(3^t-4)(x-t) \, dt$の最小値を与える$x$の値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。