タグ「部分」の検索結果

62ページ目:全894問中611問~620問を表示)
上智大学 私立 上智大学 2012年 第2問
直線$y=x-1$上の点$\mathrm{A}(a,\ a-1)$を通り,放物線$y=x^2$に接する直線を,$\ell,\ m$とする.ただし,$\ell$の方が$m$よりも傾きが大きいものとする.

(1)直線$\ell$の傾きを$a$で表すと
\[ [キ]\left( a+\sqrt{a^2+[ク]a+[ケ]} \right) \]
である.
(2)直線$\ell,\ m$と放物線$y=x^2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする,線分$\mathrm{PQ}$と放物線$y=x^2$で囲まれた部分の面積$S$を$a$で表すと,
\[ S= \frac{[コ]}{[サ]}\left( a^2 +[シ]a+[ス] \right)^{\frac{3}{2}} \]
であり,$\displaystyle a=\frac{[セ]}{[ソ]}$のとき,$S$は最小値$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$をとる.
(3)放物線$y=x^2$上の点で直線$y=x-1$との距離が最小であるのは$\displaystyle\left( \frac{[ツ]}{[テ]},\ \frac{[ト]}{[ナ]} \right)$で,その距離は$\displaystyle\frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
立教大学 私立 立教大学 2012年 第2問
関数$\displaystyle y=\frac{1}{x}$のグラフの$x>0$の部分を曲線$C$とする.実数$t$は$0<t<1$をみたすものとし,$C$上に点P$\displaystyle \left(t,\ \frac{1}{t} \right)$をとる.このとき,次の問(1)~(5)に答えよ.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{P}$を通り直線$\ell$と平行な直線を$m$とし,直線$m$と曲線$C$の共有点で点$\mathrm{P}$と異なる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$および曲線$C$で囲まれた部分の面積を$S$とする.面積$S$を$t$で表せ.
(4)点$\mathrm{P}$を通り$y$軸に平行な直線,点$\mathrm{Q}$を通り$y$軸に平行な直線,曲線$C$,および$x$軸で囲まれた部分が,$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.体積$V$を$t$で表せ.
(5)$\displaystyle \lim_{t \to 1-0} \frac{S}{V}$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$から$9$までの番号が書かれた$9$個のポールが袋に入っている.この袋の中から$1$個のボールを取り出し,その番号を確認してからもとに戻す試行を考える.

(i) この試行を$3$回行ったとき,同じ番号のボールを少なくとも$2$回取り出す確率は$\displaystyle\frac{[ア][イ]}{[ウ][エ]}$である.

(ii) この試行を$2$回行ったとき,取り出したボールの番号の差が$1$以下となる確率は$\displaystyle\frac{[オ][カ]}{[キ][ク]}$である.

(2)$t$を$t>1$をみたす実数とし,$xy$平面上で次の方程式で表される$3$直線$\ell_1,\ \ell_2,\ \ell_3$を考える.
\[ \begin{array}{l}
\ell_1:tx-y=0 \\
\ell_2:x-ty-t^2=0 \\
\ell_3:x+ty-t^2=0
\end{array} \]
$\ell_1,\ \ell_2,\ \ell_3$で囲まれる三角形の面積を$S(t)$とし,この三角形の$x$軸の上側の部分の面積を$S_1(t)$,$x$軸の下側の部分の面積を$S_2(t)$とする.

(i) $S_2(t)=2S_1(t)$となる$t$の値は$t=\sqrt{[ケ]}$である.
(ii) $\displaystyle S(t)=\frac{t^{[コ]}}{t^{[サ]}-[シ]}$であり,$S(t)$を$t$で微分して符号を調べることにより,$S(t)$は$\displaystyle t=\left( \frac{[ス]}{[セ]} \right)^{\frac{[ソ]}{[タ]}}$で最小値をとることがわかり,最小値は
\[ \frac{7}{[チ]} \left( \frac{[ツ]}{[テ]} \right)^{\frac{[ト]}{[ナ]}} \]
となる.

(3)$p$を実数とし,方程式$\displaystyle x^3-px^2-\frac{13}{4}x+\frac{15}{8}=0$は$3$つの実数解$a,\ b,\ c (a>b>c)$をもつとする.$a+c=2b$をみたすとき,
\[ a=\frac{[ニ]}{[ヌ]},\quad b=\frac{[ネ]}{[ノ]},\quad c=\frac{[ハ]}{[ヒ]},\quad p=\frac{[フ]}{[ヘ]} \]
である.
(4)$\mathrm{O}$を原点とする空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=1,\quad |\overrightarrow{\mathrm{OC}}|=3 \]
であり,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$のどの$2$つのなす角も$\displaystyle \frac{\pi}{3}$であるとする.$\mathrm{G}$を$\triangle \mathrm{ABC}$の重心とし,$\mathrm{M}$を$\mathrm{AB}$の中点,$\mathrm{N}$を$\mathrm{BC}$の中点,$\mathrm{L}$を$\mathrm{MN}$の中点とする.このとき,
\[ |\overrightarrow{\mathrm{OG}}|=\frac{[ホ]}{[マ]},\quad |\overrightarrow{\mathrm{GL}}|=\frac{\sqrt{[ミ][ム]}}{[メ][モ]} \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
自然数$n$に対して,$3$次曲線$C_n:y=x(x-n)(x-n-1)$を考え,原点$\mathrm{O}$を通る$C_n$の接線で,接点が原点以外のものを$\ell_n$とする.また,$C_n$の原点における接線と$C_n$で囲まれる部分の面積を$S_n$とし,$\ell_n$と$C_n$で囲まれる部分の面積を$T_n$とする.次の問いに答えよ.

(1)$\ell_n$の方程式を求めよ.
(2)$S_n,\ T_n$を求め,さらに,$\displaystyle \frac{T_n}{S_n}$を求めよ.
(3)$\ell_1$と平行な$C_1$の接線で,$\ell_1$と異なるものを$\ell^\prime$とする.$\ell^\prime$の方程式を求めよ.
(4)$\ell^\prime$は$(3)$におけるとおりとする.次の$4$直線で囲まれる部分を$x$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
\begin{itemize}
$\ell_1$
$\ell^\prime$
$\ell_1$が$C_1$と接する点を通り,$y$軸に平行な直線
$\ell^\prime$が$C_1$と接する点を通り,$y$軸に平行な直線
\end{itemize}
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第2問
次の問に答えなさい.

(1)$2$つの関数
\[ \begin{array}{ll}
y=|x|-1 & \cdots\cdots① \\
y=-|x|+1 & \cdots\cdots②
\end{array} \]
がある.関数$①$のグラフを$C_1$,$②$のグラフを$C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$12$],\ [$13$])$,$([$14$],\ [$15$])$で交わる.$C_1$は$y$軸と点$(0,\ [$16$])$で交わり,$C_2$は$y$軸と点$(0,\ [$17$])$で交わる.
(2)$2$つの関数
\[ \begin{array}{l}
y=\displaystyle\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} |x|-(\sqrt{5}+\sqrt{3}) \\ \\
y=-\displaystyle\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} |x|+(\sqrt{5}-\sqrt{3})
\end{array} \]
のグラフを,それぞれ,$C_1,\ C_2$とする.このとき,$C_1$と$C_2$は$2$点$(-[$18$],\ [$19$])$,$([$20$],\ [$21$])$で交わる.また,$C_1$と$C_2$で囲まれた部分の面積は$\displaystyle\frac{[$22$]}{[$23$]}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面上に$2$点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\displaystyle \mathrm{Q}(\frac{3}{2}\cos \theta,\ \frac{3}{2}\sin \theta)$がある.点$\mathrm{R}$を$\mathrm{PR}:\mathrm{QR}=1:2$を満たす点とする.

(1)点$\mathrm{R}$が直線$y \cos \theta-x \sin \theta=0$上にあるとき,それらの点の座標は
\[ \left( \frac{[ク]}{[ケ]} \cos \theta,\ \frac{[コ]}{[サ]} \sin \theta \right),\quad \left( \frac{[シ]}{[ス]} \cos \theta,\ \frac{[セ]}{[ソ]} \sin \theta \right) \]
である.ただし,$\displaystyle \frac{[ク]}{[ケ]}>\frac{[シ]}{[ス]}$とする.
(2)$\mathrm{R}$の軌跡は方程式
\[ \left( x-\frac{[タ]}{[チ]} \cos \theta \right)^2+\left( y-\frac{[ツ]}{[テ]} \sin \theta \right)^2=\frac{[ト]}{[ナ]} \]
が表す円$D(\theta)$である.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を動くとき,(2)で求めた$D(\theta)$が通過する部分の面積は$\displaystyle \frac{[ニ]}{[ヌネ]} \pi$である.
自治医科大学 私立 自治医科大学 2012年 第25問
放物線$y=-2x^2+3x-1$と$x$軸で囲まれる部分の面積を$S$とする.$24S$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に点$\mathrm{P}(s,\ t)$がある.ただし,$t<0$である.点$\mathrm{P}$から放物線$\displaystyle C:y=\frac{1}{2}x^2$に引いた$2$本の異なる接線の接点を$\mathrm{A}$,$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta$を$s$を用いて表せ.ただし,$\alpha < \beta$とする.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の式を$s$と$t$を用いて表せ.
(3)直線$\ell$と放物線$C$で囲まれる部分の面積を$S$とするとき,$S$を$s$と$t$を用いて表せ.
(4)点$\mathrm{P}$が点$(0,\ -3)$を中心とする半径$2$の円周上にあるとき,$S$の最大値,および最大値を与える点$\mathrm{P}$の座標をすべて求めよ.
北海学園大学 私立 北海学園大学 2012年 第1問
放物線$y=x^2+2(1-a)x-3a$を,$x$軸方向に$1$,$y$軸方向に$7$だけ平行移動して得られる放物線を$C:y=f(x)$とする.ただし,$a$は定数とする.

(1)$C$の頂点の座標を$a$を用いて表せ.
(2)$C$と$x$軸の正の部分が異なる$2$点で交わるような$a$の値の範囲を求めよ.
(3)$a$の値が上の(2)で求めた範囲にあるとする.このとき,$0 \leqq x \leqq 5$における関数$f(x)$の最大値と最小値をそれぞれ$a$を用いて表せ.
東北学院大学 私立 東北学院大学 2012年 第3問
次の問いに答えよ.

(1)$\alpha,\ \beta$を実数の定数とするとき,
\[ \int_\alpha^\beta (x-\alpha)(x-\beta) \, dx \]
を計算せよ.
(2)点$(1,\ 2)$を通る直線と放物線$y=x^2$とで囲まれる部分の面積が最小となるときの直線の傾きを求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。