タグ「部分」の検索結果

60ページ目:全894問中591問~600問を表示)
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
山形大学 国立 山形大学 2012年 第2問
2曲線$C_1:y=(x-a)^2 \ (a \geqq 0)$,$C_2:y=-x^2+b \ (b \geqq 0)$を考える.このとき,次の問に答えよ.

(1)$a=1,\ b=1$のとき,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
(2)$a=1,\ b=0$のとき,$C_1$と$C_2$の共通接線を求めよ.
(3)$C_1$と$C_2$が共有点を1つだけもつための条件を$a,\ b$で表せ.
(4)(3)の条件のもとでの$C_1$と$C_2$の共有点の軌跡を求めよ.
長崎大学 国立 長崎大学 2012年 第5問
関数$f(x)=xe^{-x^2}$について,次の問いに答えよ.

(1)$y=f(x)$の増減,極値,グラフの凹凸,および変曲点を調べて,そのグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty}xe^{-x^2}=0,\ \lim_{x \to -\infty}xe^{-x^2}=0$を用いてよい.
(2)$y=f(x)$の最大値と最小値,およびそのときの$x$の値を求めよ.
(3)$t>0$とする.曲線$y=f(x)$,$x$軸,および直線$x=t$で囲まれた部分の面積$S(t)$を求めよ.
(4)(3)で求めた$S(t)$について,$\displaystyle \lim_{t \to \infty}S(t)$を求めよ.
長崎大学 国立 長崎大学 2012年 第6問
次の問いに答えよ.

(1)$\displaystyle I_1=\int_0^{\sqrt{3}} \frac{dx}{x^2+1}$とする.$x=\tan \theta$とおくことにより,$\displaystyle I_1=\frac{\pi}{3}$を示せ.
(2)(1)の$I_1$を部分積分して,$I_1$と$\displaystyle I_2=\int_0^{\sqrt{3}}\frac{dx}{(x^2+1)^2}$の関係式を導き,$I_2$の値を求めよ.
(3)$t=x+\sqrt{x^2+1}$とおくことにより,不定積分$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
(4)合成関数の微分法を用いて,関数$y=\log (x+\sqrt{x^2+1})$の導関数を求めよ.
(5)極限値$\displaystyle \lim_{n \to \infty} \left\{ \frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots +\frac{1}{\sqrt{n^2+n^2}} \right\}$を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
防衛大学校 国立 防衛大学校 2012年 第1問
$2$つの関数$f(x)=x^2+ax+2,\ g(x)=-x^2+bx+2$が,$\displaystyle f^\prime \left( \frac{a+1}{2} \right)=g^\prime \left( \frac{a+1}{2} \right)$をみたしている.このとき,次の問に答えよ.ただし,$a,\ b$は定数で$a<-1$とする.

(1)$b$を$a$で表せ.
(2)$2$つの曲線$C_1:y=f(x)$と$C_2:y=g(x)$のすべての共有点について,その$x$座標を$a$の式で表せ.
(3)$C_1$と$C_2$が囲む部分の面積を$S$とするとき,$S$を$a$で表せ.
(4)$\displaystyle S=\frac{7}{3} |a+1|+2$となるような$a$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第3問
曲線$y^2-2xy+x^3=0$について,以下の問いに答えよ.ただし,$x$および$y$は$x \geqq 0,\ y \geqq 0$の実数とする.

(1)$y$についての解を求めよ.
(2)曲線の概形を描き,$x$および$y$のとりえる値の範囲を求めよ.
(3)直線$y=x$と曲線のうち$y \geqq x$を満たす線分で囲まれた部分の面積$S$を求めよ.
防衛大学校 国立 防衛大学校 2012年 第5問
$a$を$0<a<\log 2$となる定数とし,曲線$C$と直線$\ell$を
\[ C:y=\log x \quad (x>0) \qquad \ell:y=a \]
により定める.このとき,次の問に答えよ.

(1)$C$と$\ell$および直線$x=1$で囲まれた部分の面積を$S_1$とするとき,$S_1$を$a$で表せ.
(2)$C$と$\ell$および直線$x=2$で囲まれた部分の面積を$S_2$とするとき,$S_1=S_2$となる$a$の値を求めよ.
(3)$S=S_1+S_2$とするとき,$S$の値が最小となる$a$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第2問
$xy$平面上の点とベクトルに関する以下の問いに答えよ.

(1)図のように$x$軸の正の部分と$30^\circ$の角をなす直線上に$n$個の点($\mathrm{A}_1,\ \mathrm{A}_2,\ \cdots, \mathrm{A}_n$)を以下の規則で配置する.このときの$\mathrm{A}_n$の座標を$n$を用いて表せ.また$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad \overrightarrow{\mathrm{A}_1 \mathrm{A}_2}=\frac{1}{2}\overrightarrow{\mathrm{OA}_1},\quad \overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}=\frac{1}{2}\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}} \]
(図は省略)
(2)今度は$n$個の点を第一象限内に図のように反時計回りに配置する.各線分は隣り合う線分と直角をなす.このとき$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.ただし,各線分の長さの関係は以下の規則に従うものとする.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad |\overrightarrow{\mathrm{A}_1 \mathrm{A}_2}|=\frac{1}{2}|\overrightarrow{\mathrm{OA}_1}|,\quad |\overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}|=\frac{1}{2}|\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}}| \]
(図は省略)
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。