タグ「部分」の検索結果

51ページ目:全894問中501問~510問を表示)
愛知工業大学 私立 愛知工業大学 2013年 第2問
$xy$平面において,曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C_1$とする.

(1)点$(x,\ y)$が曲線$C_1$上を動くとき,$x^2+2y$の最小値$k$を求めよ.
(2)$(1)$の$k$の値に対して,曲線$x^2+2y=k$を$C_2$とする.曲線$C_2$と$x$軸の正の部分との交点を$(a,\ 0)$とする.このとき,$2$つの曲線$C_1$,$C_2$および直線$x=a$で囲まれた部分の面積を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第3問
$xy$平面において,曲線$y=-x^2-2x+6$を$C_1$,曲線$y=3 |x|$を$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
獨協大学 私立 獨協大学 2013年 第3問
放物線$y=ax^2+bx+c$と放物線$y=x^2-8x$が$x$軸上の異なる$2$点で交わるとする.このとき,次の問題に答えよ.

(1)定数$c$の値を求めよ.
(2)定数$a$を用いて定数$b$を表せ.
(3)$2$つの放物線に囲まれる部分の面積が$64$になるときの$a$の値を求めよ.
東京都市大学 私立 東京都市大学 2013年 第2問
次の問に答えよ.

(1)関数$f(x)=x^3+3ax^2+3(10-3a)x$が極値をもつような実数$a$の範囲を求めよ.
(2)曲線$y=e^x-2$と$x$軸および$y$軸で囲まれた部分の面積を求めよ.
(3)定積分$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cos x) \log (\sin x) \, dx$の値を求めよ.ただし,$\log$は自然対数とする.
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
沖縄国際大学 私立 沖縄国際大学 2013年 第3問
以下の各問いに答えなさい.

(1)次の命題$(ⅰ)$~$\tokeijyu$の真偽を書きなさい.

(i) 自然数ならば偶数である.
(ii) 食べ物ならば果物である.
(iii) 人間でないならば動物ではない.
\mon[$\tokeishi$] 整数ならば実数である.
\mon[$\tokeigo$] $|2x^2-5x-3|>0$ならば$x \neq 3$である.
\mon[$\tokeiroku$] $x^2=9$ならば$x=3$である.
\mon[$\tokeishichi$] $2$の倍数ならば$4$の倍数である.
\mon[$\tokeihachi$] $x+y>0$ならば$x>0$かつ$y>0$である.
\mon[$\tokeikyu$] $A \cap B=\phi$ならば$A \neq B$である.
\mon[$\tokeijyu$] $A=\{2x \;|\; 1 \leqq x \leqq 10,\ x \text{は自然数} \}$,$B=\{2y+2 \;|\; 1 \leqq y \leqq 10,\ y \text{は自然数} \}$ならば$A \subset B$である.

(2)以下の図において$A \cup B$の部分を塗りつぶしなさい.
(図は省略)
(3)$2x^2-x-1=0$の必要条件を次の$(ⅰ)$~$\tokeishi$からすべて選び,解答欄に記号で答えなさい.

(i) $x<0$
(ii) $x$は素数である.
(iii) $|x| \leqq 1$
\mon[$\tokeishi$] $x$は実数である.

(4)命題「$(x-1)^2=0$ならば$x=-1$または$x=1$」の逆,裏,対偶を解答欄に書きなさい.またこの命題の真偽を書き,偽のときは反例を挙げなさい.
日本医科大学 私立 日本医科大学 2013年 第3問
次の各問いに答えよ.

(1)$x \geqq 1,\ k=0,\ 1,\ 2,\ \cdots$として
\[ I_k(x)=\int \frac{(\log x)^k}{x^2} \, dx \]
とおくとき,$I_0(x)$を求め,$I_{k+1}(x)$を$I_k(x)$を用いて表せ.また$I_4(x)$を求めよ.

(2)$x>0$で不等式$\displaystyle \log x \leqq \frac{3}{e}x^{\frac{1}{3}}$が成り立つことを証明せよ.

(3)関数$\displaystyle f(x)=\frac{(\log x)^2}{x}$に関する以下の各問いに答えよ.

(i) $y=f(x) (x \geqq 1)$の極値,極限$\displaystyle \lim_{x \to +\infty} f(x)$を調べ,増減表を作り,グラフの概形を描け.
(ii) $n>1$として,$y=f(x)$と$2$直線$x=n$,$x=n^2$および$x$軸で囲まれる部分$D_n$の面積$S_n$を求めよ.
(iii) $D_n$を$x$軸のまわりに回転して得られる立体の体積$V_n$を求めよ.

\mon[$\tokeishi$] 極限$\displaystyle \lim_{n \to \infty} \frac{nV_n}{(\log n)S_n}$の値を求めよ.
北里大学 私立 北里大学 2013年 第2問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

放物線$y=-x^2+1$を$C_1$,また$y=(x-t)^2+kt+1$を$C_2$とする.ここで$k>0$とし,$t$は任意の実数値をとるものとする.$t$の値が変化するに従い,$C_2$の頂点の軌跡はある直線になる.この直線を$L$とする.

(1)$k=1$の場合を考える.このとき,直線$L$の方程式は,$y=[ア]x+[イ]$である.また$C_1$および$L$によって囲まれた部分の面積は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$\displaystyle k=\frac{1}{2}$の場合を考える.$C_1$と$C_2$がただ$1$つの点で接する場合,接点の座標は
\[ (x,\ y)=([オ],\ [カ]) \]
および
\[ (x,\ y)=\left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.
$C_1$と$C_2$が$2$つの共有点をもつのは,$[サ]<t<[シ]$のときである.このとき,それらの$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすれば,
\[ \alpha+\beta=[ス]t+[セ],\quad \alpha\beta=\frac{[ソ]}{[タ]}t^2+\frac{[チ]}{[ツ]}t+[テ] \]
である.また,$C_1$と$C_2$によって囲まれた部分の面積$S(t)$は,
\[ S(t)=\frac{1}{[ト]} ([ナ]t^2+[ニ]t+[ヌ])^p,\quad \text{ただし} p=\frac{[ネ]}{[ノ]} \]
である.この面積は$\displaystyle t=\frac{[ハ]}{[ヒ]}$のとき最大値$\displaystyle \frac{[フ]}{[ヘ][ホ]}$をとる.
東京薬科大学 私立 東京薬科大学 2013年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$である長方形の紙$\mathrm{ABCD}$が平らな机上に置かれている.$\mathrm{M}$を$\mathrm{AB}$の中点とすると,$\angle \mathrm{MCB}={[あい]}^\circ$である.いま,ある直線$\ell$に沿ってこの紙を折り曲げて,頂点$\mathrm{C}$が$\mathrm{M}$に重なるようにする.$\ell$と辺$\mathrm{BC}$との交点を$\mathrm{E}$とすると,$\mathrm{CE}$の長さは$\displaystyle \frac{[う] \sqrt{[え]}}{[お]}$である.次に,折り畳まれた紙を開き,折り曲げられた部分が机上に垂直になったところで止める(頂点$\mathrm{C}$は空中にある).このとき,$\mathrm{AC}=[か]$,$\mathrm{BC}=\sqrt{[き]}$,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[く]$となる.
京都薬科大学 私立 京都薬科大学 2013年 第4問
放物線$y={(x-1)}^2$上の異なる$2$点$\mathrm{A}(a,\ {(a-1)}^2)$,$\mathrm{B}(b,\ {(b-1)}^2)$における$2$つの接線を,それぞれ,$\ell_1,\ \ell_2$とする.ただし,$a<b$とする.また,点$\mathrm{A}$を通り$\ell_1$と直交する直線を${\ell_1}^\prime$,点$\mathrm{B}$を通り$\ell_2$と直交する直線を${\ell_2}^\prime$とする.次の$[ ]$にあてはまる数または式を記入せよ.

(1)$\ell_1$と$\ell_2$の交点の座標を$a,\ b$を使って表すと,$([ ],\ [ ])$である.
(2)この放物線と$\ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a,\ b$を使って表すと,$[ ]$である.
(3)${\ell_1}^\prime$と${\ell_2}^\prime$が直交するとき,$(2)$で求めた$S$の最小値は$[ ]$である.このとき,$a=[ ]$,$b=[ ]$となり,$\ell_1$,${\ell_1}^\prime$,$\ell_2$,${\ell_2}^\prime$の$4$つの直線で囲まれた部分の面積は$[ ]$となる.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。