タグ「部分」の検索結果

47ページ目:全894問中461問~470問を表示)
群馬大学 国立 群馬大学 2013年 第5問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円周$C$上に定点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$C$の上半円周($y$座標が正の部分)上を動く点を$\mathrm{P}$,下半円周($y$座標が負の部分)上を動く点を$\mathrm{Q}$とする.$\displaystyle \angle \mathrm{PAB}=\alpha \ \left( 0<\alpha<\frac{\pi}{2} \right)$,$\displaystyle \angle \mathrm{QAB}=\beta \ \left( 0<\beta<\frac{\pi}{2} \right)$とし,直線$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}(t,\ 0)$とする.

(1)$t$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle \alpha+\beta=\frac{\pi}{4}$のとき,$t$のとり得る値の範囲を求めよ.
(3)線分$\mathrm{PR}$の長さと線分$\mathrm{RQ}$の長さの比が$2:1$のとき,$t$を$\alpha$を用いて表せ.
群馬大学 国立 群馬大学 2013年 第10問
$\alpha$を実数とし,点$(\alpha,\ 0)$を通り傾き$\alpha$の直線を$\ell(\alpha)$とおく.放物線$y=px^2+qx+r$は,$\alpha$がすべての実数を動くとき,つねに$\ell(\alpha)$と接している.

(1)$p,\ q,\ r$の値を求め,接点の座標を$\alpha$を用いて表せ.
(2)$\alpha \neq 0$のとき,この放物線と$\ell(\alpha)$および$x$軸で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2013年 第16問
座標平面上に原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2 \sqrt{2},\ 0)$がある.$0<t<1$のとき,線分$\mathrm{AO}$,$\mathrm{OB}$を$t:1-t$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とする.また,$t=0$,$t=1$のとき,$\mathrm{R}$はそれぞれ$\mathrm{A}$,$\mathrm{B}$に一致するものとし,$t$を$0 \leqq t \leqq 1$の範囲で動かしたときの$\mathrm{R}$の軌跡を$C$とする.

(1)$C$を媒介変数$t$を用いて表せ.
(2)点$\mathrm{R}$と原点$\mathrm{O}$の距離の最小値を求めよ.
(3)$C$と線分$\mathrm{AB}$で囲まれた部分の面積$S$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第3問
$a$を正の定数とし,$m$を自然数とする.$xy$平面上の$2$曲線$C_1:y=ax^2 \ (x \geqq 0)$,$C_2:y=(\log x)^{m} \ (x \geqq 1)$および点$\mathrm{P}$は次の条件を満たしている.

$C_1$と$C_2$は$\mathrm{P}$を通り,$\mathrm{P}$における$C_1$の接線と$\mathrm{P}$における$C_2$の接線は一致する.
(1)$a$の値および$\mathrm{P}$の$x$座標を$m$を用いて表せ.
(2)関数$\displaystyle f(x)=\frac{(\log x)^m}{x^2} \ (x \geqq 1)$の最大値を求め,$x \geqq 1$において不等式$ax^2 \geqq (\log x)^m$が成り立つことを示せ.
(3)自然数$n$に対して,不定積分$\displaystyle \int (\log x)^n \, dx$を$I_n$とおく.$n \geqq 2$のとき,部分積分法により,$I_n$を$I_{n-1}$を用いて表せ.
(4)$m=2$のとき,$C_1,\ C_2$および$x$軸で囲まれた部分の面積を求めよ.
山口大学 国立 山口大学 2013年 第1問
$x>0,\ x \neq 1$を定義域とする次の$5$つの関数を考える.
\[ \frac{x^2+1}{2},\quad \frac{2x^2}{x^2+1},\quad x,\quad \left( \frac{x+1}{2} \right)^2,\quad \frac{x^2-1}{2 \log x} \]
このとき,次の問いに答えなさい.

(1)上の$5$つの関数の間に$[1]<[2]<[3]<[4]<[5]$の不等式が成立するとすれば,$[1]$から$[5]$にはどの関数が入るか.$x=2$を代入することによりそれらを決定しなさい.ただし,$\log 2=0.693 \cdots$とする.
(2)$[4]<[5]$の部分の不等式を証明しなさい.
(3)$[2]<[3]$の部分の不等式を証明しなさい.
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
滋賀医科大学 国立 滋賀医科大学 2013年 第4問
$xy$平面において,連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
で定まる図形を$S$とする.$t$を$0<t<1$となる定数とし,$S$を直線$y=t$で$2$つの部分に切断する.$S_1$を$S$と領域$y \geqq t$の共通部分,$S_2$を$S$と領域$y \leqq t$の共通部分とする.

(1)図形$S_1,\ S_2$を描け.
(2)$S_1,\ S_2$を$y$軸の周りに$1$回転させてできる立体をそれぞれ$V_1,\ V_2$とする.不等式
\[ \frac{(S_1 \ \text{の面積})}{(S_2 \ \text{の面積})} \geqq \frac{(V_1 \ \text{の体積})}{(V_2 \ \text{の体積})} \]
を示せ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。