タグ「部分」の検索結果

45ページ目:全894問中441問~450問を表示)
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
弘前大学 国立 弘前大学 2013年 第2問
曲線$\displaystyle y=e^x+\frac{6}{e^x+1}$と直線$y=4$で囲まれた部分の面積を求めよ.ただし,$e$は自然対数の底である.
弘前大学 国立 弘前大学 2013年 第4問
$x \geqq 2$とし,区間$-1 \leqq t \leqq 1$における$f(t)=4t^3-x^2t$の最大値を$M(x)$で表す.このとき,次の問いに答えよ.

(1)$y=M(x)$のグラフの概形をかけ.
(2)曲線$y=M(x)$と$y$軸および$2$直線$\displaystyle y=\frac{8 \sqrt{3}}{9},\ y=10$で囲まれた部分の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^2,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=2e$のとき,$C_1$,$C_2$および$x$軸で囲まれた部分を$D$とする.$D$の面積$S$を求めよ.ただし,$e$は自然対数の底とする.
(4)(3)の$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
高知大学 国立 高知大学 2013年 第1問
$3$次関数$f(x)=x^3-6x+3$について,次の問いに答えよ.

(1)$y=f(x)$の増減表を作り,$y$が極大,極小となるグラフ上の点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$とするとき,それらの点の座標を求めよ.
(2)線分$\mathrm{AB}$の中点$\mathrm{C}$の座標を求め,$\mathrm{C}$が$y=f(x)$のグラフの上にあることを示せ.
(3)$y=f(x)$のグラフは,$(2)$で求めた点$\mathrm{C}$に関して点対称であることを示せ.
(4)$(2)$で求めた点$\mathrm{C}$を通り傾きが$2$の直線と$y=f(x)$のグラフで囲まれた部分の面積を求めよ.
旭川医科大学 国立 旭川医科大学 2013年 第3問
$a$を正の実数とし,$f(x)=e^{-x}\sin ax$とおくとき,次の問いに答えよ.

(1)$n$を自然数とする.曲線$\displaystyle y=f(x) \ \left( \frac{2(n-1)\pi}{a} \leqq x \leqq \frac{2n \pi}{a} \right)$と$x$軸で囲まれた部分の面積を$A_n$で表すとき,$A_n$を$a$と$n$を用いて表せ.
(2)$\displaystyle S=\sum_{n=1}^\infty A_n$を$a$を用いて表せ.
(3)$\displaystyle \lim_{a \to \infty}S$を求めよ.
小樽商科大学 国立 小樽商科大学 2013年 第5問
双曲線$\displaystyle y=\frac{1}{x}+\frac{4}{3}$を$C_1$,曲線$\displaystyle y=-\frac{1}{3}x^3+a$を$C_2$,$C_2$と$x$軸の交点を通る$y$軸と平行な直線を$L$とする.ただし$a$は実数とする.このとき,次の問いに答えよ.

(1)$C_1$と$C_2$が第一象限で接するとき,$a$の値を求めよ.
(2)$(1)$で求めた$a$に対して,$C_1$と$C_2$と$L$で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第1問
$a,\ b$を定数とし,$a \neq 0$とする.関数$f(x)=ax^2-4x+b$は,条件
\[ x^2f^{\prime\prime}(x)-xf^\prime(x)+f(x)=x^2+8 \]
を満たすとする.

(1)$a,\ b$の値を求めよ.
(2)直線$\ell$が,放物線$y=x^2$の接線であり,かつ放物線$y=f(x)$の接線でもあるとき,$\ell$の方程式を求めよ.
(3)$2$つの放物線$y=x^2$と$y=f(x)$,および$(2)$で求めた接線$\ell$で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第2問
$2$つの曲線
\[ y=\cos^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \quad \text{と} \quad y=\sin^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を,それぞれ$C_1$と$C_2$とする.

(1)$C_1$と$C_2$の$2$つの交点の座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分$D$の面積を求めよ.
(3)$D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
$\displaystyle 0<a<\frac{1}{3},\ b>0$とする.放物線$y=x^2-2a^2x$の$x \geqq 0$の部分を曲線$C$とする.直線$\ell:y=b$と$C$とが$0<x<a$の範囲で交わっている.さらに,$C$と$\ell$と$y$軸で囲まれる部分の面積と,$C$と$\ell$と直線$x=a$で囲まれる部分の面積が等しい.このとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)$b$を最大にする$a$の値と,そのときの$b$の値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。