タグ「部分」の検索結果

44ページ目:全894問中431問~440問を表示)
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が2である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)円$\displaystyle x^2+y^2=\frac{9}{4}$と$C$の交点の$x$座標をすべて求めよ.さらに,交点の個数を求めよ.
東京工業大学 国立 東京工業大学 2013年 第5問
$a,\ b$を正の実数とし,円$C_1:(x-a)^2+y^2=a^2$と楕円$\displaystyle C_2:x^2+\frac{y^2}{b^2}=1$を考える.

(1)$C_1$が$C_2$に内接するための$a,\ b$の条件を求めよ.
(2)$\displaystyle b=\frac{1}{\sqrt{3}}$とし,$C_1$が$C_2$に内接しているとする.このとき,第1象限における$C_1$と$C_2$の接点の座標$(p,\ q)$を求めよ.
(3)(2)の条件のもとで,$x \geqq p$の範囲において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
筑波大学 国立 筑波大学 2013年 第2問
$n$は自然数とする.

(1)$1 \leqq k \leqq n$を満たす自然数$k$に対して
\[ \int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt \cos t \, dt=(-1)^{k+1} \frac{2n}{4n^2-1} \left( \cos \frac{k}{2n}\pi+\cos \frac{k-1}{2n}\pi \right) \]
が成り立つことを示せ.
(2)媒介変数$t$によって
\[ x=\sin t,\quad y=\sin 2nt \quad (0 \leqq t \leqq \pi) \]
と表される曲線$C_n$で囲まれた部分の面積$S_n$を求めよ.ただし必要なら
\[ \sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi=\frac{1}{2} \left( \frac{1}{\tan \displaystyle\frac{\pi}{4n}} -1 \right) \quad (n \geqq 2) \]
を用いてよい.
(3)極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(図は省略)
福岡教育大学 国立 福岡教育大学 2013年 第4問
$f(x)=xe^{-\frac{x}{2}},\ g(x)=\sqrt{e}x$とする.次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の極値を求めよ.
(2)$k$を定数とする.$0 \leqq x \leqq 4$の範囲で$f(x)=k$の実数解の個数を求めよ.
(3)$2$つの曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第4問
$f(x)=xe^{-\frac{x}{2}},\ g(x)=\sqrt{e}x$とする.次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の極値を求めよ.
(2)$k$を定数とする.$0 \leqq x \leqq 4$の範囲で$f(x)=k$の実数解の個数を求めよ.
(3)$2$つの曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第3問
曲線$\displaystyle y=\frac{1}{x} \ (x>0)$を曲線$C$とする.曲線$C$と直線$y=mx$の交点を点$\mathrm{P}$,曲線$C$と直線$\displaystyle y=\frac{1}{2}x$との交点を点$\mathrm{Q}$とする.ここで傾き$m$を$\displaystyle m>\frac{1}{2}$の実数とする.以下の問いに答えよ.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標をそれぞれ求めよ.
(2)点$\mathrm{Q}$における曲線$C$の接線$L$の方程式を求めよ.
(3)接線$L$と直線$y=mx$の交点の座標を,$m$を用いて表せ.
(4)原点$\mathrm{O}$と点$\mathrm{P}$,原点$\mathrm{O}$と点$\mathrm{Q}$を結ぶ線分をそれぞれ$\mathrm{OP}$,$\mathrm{OQ}$とする.曲線$C$と$\mathrm{OP}$,$\mathrm{OQ}$で囲まれた部分の面積$A$を,$m$を用いて表せ.
(5)点$\mathrm{P}$および点$\mathrm{Q}$から$y$軸に垂直に引いたそれぞれの線分と,$y$軸および曲線$C$で囲まれた領域を$y$軸のまわりに$1$回転してできる体積を,$m$を用いて表せ.
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
富山大学 国立 富山大学 2013年 第3問
直線$y=ax (a>0)$と$x$軸,および直線$x=1$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$V$とし,曲線$y=x+\sin x (0 \leqq x \leqq 2\pi)$と$x$軸,および直線$x=2\pi$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を$W$とする.このとき,次の問いに答えよ.

(1)$V$を$a$を用いて表せ.
(2)$0<x \leqq 2\pi$において,$x+\sin x>0$であることを示せ.
(3)$W$の値を求めよ.
(4)$V=W$のとき,$a$の値を求めよ.
富山大学 国立 富山大学 2013年 第1問
関数$f(x)=x+2 \sin x$を考える.このとき,次の問いに答えよ.

(1)$y=f(x) \ (0 \leqq x \leqq 2\pi)$の増減を調べ,そのグラフをかけ.
(2)$0<x<2\pi$において関数$f(x)$が極値をとるときの$x$の値を$\alpha,\ \beta \ (0<\alpha<\beta<2\pi)$とする.曲線$y=f(x)$の$\alpha \leqq x \leqq \beta$の部分と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
富山大学 国立 富山大学 2013年 第3問
$2$つの曲線$C_1:y=|x^2-1|$,$C_2:y=m(x+1)^2 \ (0<m<1)$を考える.このとき,次の問いに答えよ.

(1)$x>0$の範囲における$C_1$と$C_2$の$2$つの交点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.$\alpha,\ \beta$を$m$を用いて表せ.
(2)$C_1$と$C_2$で囲まれた図形のうち,$x \leqq \alpha$を満たす部分の面積を$S_1$,$x \geqq \alpha$を満たす部分の面積を$S_2$とおく.$S_1,\ S_2$を,$m$を用いて表せ.
(3)$S_1=S_2$のとき$m$の値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。