タグ「部分」の検索結果

43ページ目:全894問中421問~430問を表示)
横浜国立大学 国立 横浜国立大学 2013年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$に対し,$xy$平面の第1象限の点$\mathrm{P}$および$x$軸の正の部分にある点$\mathrm{Q}$を
\[ \angle \mathrm{QOP}=\theta,\quad \angle \mathrm{PQO}=2\theta,\quad \mathrm{PQ}=1 \]
を満たすようにとる.$\mathrm{PQ}$の中点を$\mathrm{R}$とする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,$\mathrm{P}$の軌跡を$C_1$,$\mathrm{R}$の軌跡を$C_2$とする.次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(2)$C_1,\ C_2$を求め,それらを図示せよ.
(3)$C_1,\ C_2$および$x$軸で囲まれる部分を$x$軸のまわりに1回転してできる回転体の体積を求めよ.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
一橋大学 国立 一橋大学 2013年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,放物線$C:y=1-x^2$がある.$C$上に$2$点$\mathrm{P}(p,\ 1-p^2)$,$\mathrm{Q}(q,\ 1-q^2)$を$p<q$となるようにとる.

(1)$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$と放物線$C$で囲まれた部分の面積$S$を,$p$と$q$の式で表せ.
(2)$q=p+1$であるとき$S$の最小値を求めよ.
(3)$pq=-1$であるとき$S$の最小値を求めよ.
大阪大学 国立 大阪大学 2013年 第3問
曲線$y=x^2+x+4-|3x|$と直線$y=mx+4$で囲まれる部分の面積が最小となるように定数$m$の値を定めよ.
広島大学 国立 広島大学 2013年 第1問
放物線$y=2x^2-8$を$C$とする.$x$軸上の点$\mathrm{A}(a,\ 0) \ (a>0)$を通り$C$と接する直線が$2$本あるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$2$つの接点$\mathrm{P},\ \mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha=3$のとき,$a$の値と$2$本の接線の方程式を求めよ.
(3)$(2)$で求めた$2$本の接線と$C$で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2013年 第5問
次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$x \geqq 2$のとき,$x^4e^{-3x} \leqq 16e^{-6}$を示せ.また,これを用いて$\displaystyle \lim_{x \to \infty}x^3e^{-3x}$を求めよ.
(2)$k$を定数とする.$x>0$の範囲で方程式
\[ xe^{-3x}=\frac{k}{x^2} \]
がちょうど$2$つの解$\alpha,\ \beta (\alpha<\beta)$をもつような$k$の値の範囲を求めよ.
(3)$(2)$の$\alpha,\ \beta$が$\beta=2 \alpha$を満たすとき,曲線$y=xe^{-3x} (x>0)$と曲線$\displaystyle y=\frac{k}{x^2} (x>0)$で囲まれた部分の面積を求めよ.
神戸大学 国立 神戸大学 2013年 第3問
$c$を$0<c<1$をみたす実数とする.$f(x)$を$2$次以下の多項式とし,曲線$y=f(x)$が$3$点$(0,\ 0)$,$(c,\ c^3-2c)$,$(1,\ -1)$を通るとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と曲線$y=x^3-2x$で囲まれた部分の面積$S$を$c$を用いて表せ.
(3)$(2)$で求めた$S$を最小にするような$c$の値を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が$2$である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)$a$を正の数とする.円$x^2+y^2=a$と$C$の交点の個数が,$a$の値によってどのように変わるかを調べよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。