タグ「部分」の検索結果

40ページ目:全894問中391問~400問を表示)
立教大学 私立 立教大学 2014年 第3問
実数$p \neq -1$に対し,$2$つの直線$\ell,\ m$と放物線$C$を
\[ \ell:y=-x+1,\quad m:y=px-p^3,\quad C:y=\frac{1}{4}x^2+qx+r \]
とする.このとき,次の問に答えよ.

(1)放物線$C$と直線$\ell$が点$\mathrm{A}$で接しているとき,$r$を$q$の$2$次式で表せ.また,点$\mathrm{A}$の$x$座標を$q$を用いて表せ.
(2)放物線$C$と直線$\ell$が点$\mathrm{A}$で接し,さらに放物線$C$と直線$m$が点$\mathrm{B}$で接しているとき,$q$を$p$の$2$次式で表せ.また,点$\mathrm{B}$の$x$座標を$p$を用いて表せ.
(3)放物線$C$と直線$\ell$が点$\mathrm{A}$で接し,さらに放物線$C$と直線$m$が点$\mathrm{B}$で接しているとき,放物線$C$の頂点の$y$座標が最大になるような$p$の値を求めよ.
(4)$(1)$,$(2)$,$(3)$で定められる$p,\ q,\ r$に対して,点$\mathrm{A}$を通り$y$軸と平行な直線,点$\mathrm{B}$を通り$y$軸と平行な直線,$x$軸,および放物線$C$で囲まれる部分の面積を求めよ.
北里大学 私立 北里大学 2014年 第1問
$2$次関数$y=-x^2+3$のグラフを$C_1$とし,$1$次関数$y=2x+3$のグラフを$\ell_1$とする.以下の$2$つの条件を満たす放物線を$C_2$とする.

条件$1.$ $C_2$は$C_1$を平行移動した放物線であり,点$(1,\ 2)$は$C_1$と$C_2$の共有点である.
条件$2.$ $C_2$の頂点は$\ell_1$上にあり,その$x$座標は正の数である.

$C_1$と$C_2$の両方に接する直線を$\ell_2$とする.

(1)$C_2$をグラフとする$2$次関数は$y=[ア]$である.
(2)$\ell_2$をグラフとする$1$次関数は$y=[イ]$である.
(3)$C_1$と$C_2$および$\ell_2$で囲まれた部分の面積は$[ウ]$である.
名城大学 私立 名城大学 2014年 第4問
$xy$平面上に,放物線$C_1:y=x^2-1$,$C_2:y=x^2$がある.$C_1$上を動く点$\mathrm{P}(p,\ p^2-1)$から$C_2$に$2$本の接線を引き,それらの接点を$\mathrm{Q}(\alpha,\ \alpha^2)$,$\mathrm{R}(\beta,\ \beta^2) (\alpha<\beta)$とする.さらに,$C_2$と$2$直線$\mathrm{PQ}$,$\mathrm{PR}$で囲まれる部分の面積を$S$とする.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$S$は$\mathrm{P}$の位置によらず一定であることを示し,その値を求めよ.
東京都市大学 私立 東京都市大学 2014年 第4問
楕円$x^2+3y^2=2$を$C_1$とし,円$x^2+y^2=1$を$C_2$とする.このとき,次の問に答えよ.

(1)$C_1$を図示せよ.
(2)$C_1$と$C_2$との$4$つの交点の座標は,$(p,\ q)$,$(-p,\ q)$,$(-p,\ -q)$,$(p,\ -q)$と表される.$p,\ q$を求めよ.ただし,$p>0$,$q>0$とする.
(3)楕円$C_1$で囲まれた図形のうち,$0 \leqq x \leqq p$となる部分の面積を求めよ.ただし,$p$は$(2)$で求めたものとする.
東京都市大学 私立 東京都市大学 2014年 第4問
$xy$平面上に関数$y=e^x$のグラフ$C_1$と関数$y=a \sqrt{x} (a>0)$のグラフ$C_2$があり,ただ$1$つの共有点$\mathrm{A}$をもち,点$\mathrm{A}$で同一の接線をもつ.このとき,次の問に答えよ.

(1)点$\mathrm{A}$の$x$座標と$a$の値を求めよ.
(2)$C_1$と$C_2$と$y$軸で囲まれる部分の面積を求めよ.
(3)$(2)$の図形を$x$軸で$1$回転させた回転体の体積を求めよ.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第4問
$y=\sqrt{x}$で表される曲線$C$と,$C$上の点$\mathrm{A}(4,\ 2)$が与えられている.このとき以下の問いに答えなさい.

(1)点$\mathrm{A}$における曲線$C$の接線および法線の方程式を求めなさい.
(2)$(1)$で求めた法線と曲線$C$および$x$軸とで囲まれた部分の面積を求めなさい.
学習院大学 私立 学習院大学 2014年 第4問
放物線$C:y=x^2$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{3}{4} \right)$に対して,$\mathrm{P}$における$C$の接線を$L$とする.

(1)$C$と$L$と$y$軸とで囲まれた部分の面積を求めよ.
(2)点$\mathrm{P}$で$L$に接し,同時に$x$軸の正の部分に接する円を$K$とする.$K$の中心の座標を求めよ.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2014年 第3問
次の設問に答えなさい.

(1)三角形$\mathrm{ABC}$について$\sin B$を$3$辺の長さ$a,\ b,\ c$を用いて表しなさい.

\begin{zahyou*}[ul=1.8mm](-20,20)(-5,20)%
\tenretu*{A(10,14);B(-15,0);C(15,0)}%
{\thicklines
\Drawline{\A\B\C\A}%
}
\Kakukigou\B\A\C{}%
\Kakukigou\C\B\A<Hankei=6mm>{}%
\Kakukigou\A\C\B{}%
\emathPut{(9,15.5)}{$\mathrm{A}$}
\emathPut{(-18,-1)}{$\mathrm{B}$}
\emathPut{(17,-1)}{$\mathrm{C}$}
\emathPut{(7.5,9)}{$A$}
\emathPut{(-9.5,0.7)}{$B$}
\emathPut{(9.5,0.7)}{$C$}
\emathPut{(0,-3)}{$a$}
\emathPut{(14.5,8)}{$b$}
\emathPut{(-5.5,8)}{$c$}
\end{zahyou*}

(2)下図のように半径$R$の円に外接する正三角形を$\triangle \mathrm{ABC}$とし,内接する正三角形を$\triangle \mathrm{DEF}$とします.このとき$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$で囲まれた図形(図中の斜線部分)の面積を求めなさい.

\begin{zahyou*}[ul=1.5mm](-20,20)(-10,25)%
\tenretu*{O(0,0);A(0,20);B(-17.32,-10);C(17.32,-10);D(0,10);E(-8.66,-5);F(8.66,-5)}%
{\thicklines
\emPaint*{\A\B\C}
\Nuritubusi[0]{\D\E\F\D}%
\En\O{10}%
\Drawline{\A\B\C\A}%
\Drawline{\D\E\F\D}%
}
\emathPut{(-0.8,21)}{$\mathrm{A}$}
\emathPut{(-20.8,-11)}{$\mathrm{B}$}
\emathPut{(19,-11)}{$\mathrm{C}$}
\emathPut{(-0.8,5.5)}{$\mathrm{D}$}
\emathPut{(-6.2,-4)}{$\mathrm{E}$}
\emathPut{(4.5,-4)}{$\mathrm{F}$}
\end{zahyou*}
首都大学東京 公立 首都大学東京 2014年 第3問
$f(x)=xe^{-x}$,$t>1$とするとき,以下の問いに答えなさい.

(1)曲線$y=f(x)$と直線$\displaystyle y=\frac{x}{t}$のすべての交点の座標を求めなさい.
(2)$(1)$のような$y=f(x)$と$\displaystyle y=\frac{x}{t}$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t$が$1$より大きい実数全体を動くとき,関数$\displaystyle g(t)=\frac{t}{\log t}(1-S(t))$の最小値を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第3問
$xy$平面において,$x$軸の正の部分に中心$\mathrm{A}$をもつ半径$1$の円$C$が,直線$\displaystyle y=x \tan t (0<t<\frac{\pi}{2})$に点$\mathrm{P}$で接している.以下の問いに答えなさい.

(1)点$\mathrm{A}$と点$\mathrm{P}$の$x$座標を求めなさい.
(2)$x$軸の正の部分と円$C$と直線$y=x \tan t$で囲まれる部分を$x$軸のまわりに回転した立体の体積$V(t)$を求めなさい.
(3)極限値$\displaystyle \lim_{t \to +0}tV(t)$を求めなさい.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。