タグ「部分」の検索結果

36ページ目:全894問中351問~360問を表示)
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
京都産業大学 私立 京都産業大学 2014年 第3問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$がある.直線$\ell$は辺$\mathrm{OB}$上の点$\mathrm{P}(0,\ t) (0 \leqq t \leqq 2)$を通り,$\triangle \mathrm{OAB}$の面積を$2$等分しているとする.直線$\ell$と$\triangle \mathrm{OAB}$の辺の$2$つの交点のうち,点$\mathrm{P}$でない方の点を$\mathrm{Q}$とし,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)$0 \leqq t \leqq 1$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(2)$(1)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(3)$1 \leqq t \leqq 2$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(4)$(3)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(5)$(2)$で求めた$x$の式を$f(x)$,$(4)$で求めた$x$の式を$g(x)$とする.$2$曲線$y=f(x)$,$y=g(x)$と直線$\displaystyle x=\frac{1}{2}$で囲まれた部分の面積を求めよ.
中京大学 私立 中京大学 2014年 第3問
方程式$x^4-6x^2-4y^2+8y+5=0$で表される曲線$C$について,次の各問に答えよ.

(1)曲線$C$の概形をかけ.
(2)曲線$C$で囲まれる部分の周囲の長さを求めよ.なお,曲線$y=f(x) (a \leqq x \leqq b)$の長さは次の積分で求められることを使ってよい.
\[ \int_a^b \sqrt{1+\{f^\prime(x)\}^2} \, dx \]
中部大学 私立 中部大学 2014年 第3問
関数$f(x)=x^2-4 |x+2|+2x+4$について,次の問いに答えよ.

(1)曲線$y=f(x)$の概形をかけ.
(2)$y=f(x)$のグラフに$2$点で接する直線の方程式を求めよ.
(3)$(2)$で求めた接線と$y=f(x)$が囲む部分の面積を求めよ.
学習院大学 私立 学習院大学 2014年 第3問
平面上に$3$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(-t,\ t^2-a)$,$\mathrm{C}(t,\ t^2-a)$があり,条件
\[ a>0,\quad 0<t \leqq \sqrt{a},\quad \triangle \mathrm{ABC} \text{は正三角形} \]
が成り立っているとする.

(1)$a$を$t$で表せ.
(2)$0<t \leqq \sqrt{3}$であることを示せ.
(3)$2$つの放物線$y=x^2-a$,$y=-x^2+a$で囲まれた部分の面積を$S$とし,$\triangle \mathrm{ABC}$の面積を$T$とする.$t$が$(2)$の範囲を動くとき,$\displaystyle \frac{S}{T}$の最小値を求めよ.
広島修道大学 私立 広島修道大学 2014年 第2問
放物線$y=-2x^2-2x+4$について,次の問いに答えよ.

(1)この放物線に点$(-1,\ 6)$から引いた$2$本の接線の方程式を求めよ.
(2)$(1)$で求めた$2$本の接線と$x$軸でつくられた三角形の面積を$S_1$とし,この放物線と$x$軸で囲まれた部分の面積を$S_2$とする.このとき,$|S_1-S_2|$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第2問
放物線$C_1:y=x^2$と放物線$C_2:y=-(x-a)^2+b$が点$\mathrm{P}(t,\ t^2) (t>0)$において接している.

(1)$a$と$b$を$t$を用いて表せ.
(2)曲線$C_2$と$x$軸との交点のうち,$x$座標の小さい点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.$C_1$と$C_2$と線分$\mathrm{OQ}$で囲まれた部分の面積を$S_1$とし,$C_2$と線分$\mathrm{OQ}$と$y$軸で囲まれた部分の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$は$t$に無関係な値であることを示せ.
学習院大学 私立 学習院大学 2014年 第4問
$a$を正の実数とし,$2$つの放物線
\[ C_1:y={\left( 2x+\frac{1}{a} \right)}^2,\quad C_2:y={(x-a)}^2 \]
を考える.

(1)$C_1$と$C_2$の交点の座標を求めよ.
(2)$C_1$と$C_2$とで囲まれる部分の面積$S$を求めよ.
(3)$a$が正の実数全体を動くとき,$S$の最小値を求めよ.
神奈川大学 私立 神奈川大学 2014年 第3問
$x>0$に対して,曲線$\displaystyle C:y=\frac{1}{x^2}$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t^2} \right)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}$とする.また,点$(t,\ 0)$を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)三角形$\mathrm{PHQ}$の面積$S_1$を求めよ.
(3)曲線$C$,線分$\mathrm{PQ}$および$\mathrm{Q}$を通る$y$軸に平行な直線で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_1}{S_2}$を求めよ.
神奈川大学 私立 神奈川大学 2014年 第3問
$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}x^2+2$とする.以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の増減表をかき,極値を求めよ.
(3)$y=f^\prime(x)$のグラフと$x$軸で囲まれた部分の面積を$S_1$とする.$S_1$を求めよ.
(4)$0<k<1$とする.直線$y=kx$と$y=f^\prime(x)$のグラフで囲まれた部分の面積を$S_2$とする.$S_2$を$k$の式で表せ.
(5)$S_2$が$S_1$の$\displaystyle \frac{1}{8}$となるときの$k$の値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。