タグ「部分」の検索結果

35ページ目:全894問中341問~350問を表示)
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第1問
放物線$y=-x^2+8x$と直線$y=2x+t (t \geqq 0)$と直線$x=0$,$x=6$とで囲まれた図形の面積を$S(t)$とする.このとき,次の問に答えなさい.

(1)$S(12)=[アイ]$である.
(2)$S(t)$が$3$つの部分の面積の和になるのは$[ウ]<t<[エ]$のときである.このとき$S(t)$は
\[ [オ](t-[カ])+\frac{[キ]}{[ク]}([ケ]-t) \sqrt{[ケ]-t} \]
である.
(3)以下$[ウ]<t<[エ]$で考える.$A=\sqrt{[ケ]-t}$とおく.$S(t)$を$A$で表すと
\[ S(t)=\frac{[コ]}{[サ]}A^3-[シ]A^2+[スセ] \]
となる.また$\displaystyle A=\frac{[ソ]}{[タ]}$のとき$S(t)$は最小値$\displaystyle \frac{[チツ]}{[テ]}$をとる.
東北工業大学 私立 東北工業大学 2014年 第1問
$x$の$2$次関数$y=x^2-4px+(4p+5)(p-1)$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]p$である.
(2)$p=3$のとき,この関数は最小値$-[ウ][エ]$をとり,そのグラフと$y$軸との交点の$y$座標は$[オ][カ]$である.
(3)この関数のグラフが$x$軸の正の部分と異なる$2$点で交わるとき,$[キ][ク]<p<[ケ][コ]$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第5問
次の問いに答えよ.

(1)軸が直線$x=2$で,$2$点$(4,\ 1)$,$(3,\ 7)$を通る放物線$C_1$の方程式を求めると$[シ]$である.また,点$(4,\ 1)$における放物線$C_1$の接線の方程式を求めると$[ス]$である.
(2)放物線$C_1$を原点に関して対称移動して得られる放物線$C_2$の方程式を求めると$[セ]$である.
(3)$2$つの放物線$C_1,\ C_2$で囲まれた部分の面積を求めると$[ソ]$である.
(4)放物線$C_2$を$y$軸方向に平行移動すると,放物線$C_1$と$1$点で接した.平行移動して得られた放物線の方程式は$[タ]$である.
福岡大学 私立 福岡大学 2014年 第6問
関数$\displaystyle f(x)=2x-1+2 \cos^2 x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の問いに答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)曲線$y=f(x)$の変曲点における接線と曲線$y=f(x)$および$y$軸とで囲まれる部分の面積を求めよ.
福岡大学 私立 福岡大学 2014年 第8問
曲線$C:y=xe^{2x}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)曲線$C$の変曲点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$における接線と$y$軸および曲線$C$によって囲まれる部分の面積を求めよ.
福岡大学 私立 福岡大学 2014年 第9問
$f(x)=(x+a)e^{-x} (a \neq 0)$とする.曲線$y=f(x)$が原点を通る接線をただ$1$つもつとき,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$a$の値を求めよ.
(2)$(1)$のとき,この曲線と$y$軸およびこの曲線の変曲点を通る接線とで囲まれる部分の面積を求めよ.
愛知工業大学 私立 愛知工業大学 2014年 第2問
$x>0$において,つねに正の値をとる連続な関数$f(x)$がある.$xy$平面において,$0<a<b$をみたすすべての実数$a,\ b$に対して,曲線$y=f(x)$,$x$軸,直線$x=a$および直線$x=b$で囲まれた部分の面積$S$は
\[ S=\frac{1}{a}-\frac{1}{b} \]
であるとする.

(1)$f(x)$を求めよ.
(2)$c>0$とする.曲線$y=f(x)$上の点$(c,\ f(c))$における接線,$x$軸および$y$軸で囲まれた三角形の面積を$T$とするとき,$\displaystyle \lim_{c \to \infty}T$を求めよ.
愛知工業大学 私立 愛知工業大学 2014年 第3問
$a>0$とする.$xy$平面において,放物線$y=x^2+1$の$x \geqq 0$の部分を$C$とし,曲線$C$上の点$\mathrm{A}(a,\ a^2+1)$における接線を$\ell$,$\mathrm{A}$を通り$\ell$に垂直な直線を$m$とする.

(1)直線$\ell$の方程式と直線$m$の方程式を求めよ.
(2)曲線$C$,直線$\ell$および$y$軸で囲まれた部分の面積を$S_1$とし,曲線$C$,直線$m$および$y$軸で囲まれた部分の面積を$S_2$とする.$3S_1=S_2$となるとき,$a$の値を求めよ.
龍谷大学 私立 龍谷大学 2014年 第4問
関数$f(x)=(x^2-2)^2$について考える.

(1)$f(x)$の増減と極値を調べ,それをもとに$y=f(x)$のグラフの概形を描きなさい.
(2)$x$軸と曲線$y=f(x)$で囲まれた部分を$y$軸のまわりに$1$回転してできる立体の体積を求めなさい.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。