タグ「部分」の検索結果

34ページ目:全894問中331問~340問を表示)
山口大学 国立 山口大学 2014年 第2問
図のように,円柱$E$と直円錐$F$が半径$1$の球に内接しており,さらに$E$と$F$の底面は一致している.このとき,次の問いに答えなさい.
(図は省略)

(1)円柱$E$の高さを$h$とするとき,円柱$E$の底面の半径と直円錐$F$の高さを,それぞれ$h$を用いて表しなさい.
(2)半径$1$の球に内接する円柱の体積の最大値を求めなさい.
(3)円柱$E$の体積と直円錐$F$の体積が等しいとする.円柱$E$から直円錐$F$が重なっている部分をくり抜いたとき,くり抜かれて残った立体の体積を求めなさい.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
茨城大学 国立 茨城大学 2014年 第3問
放物線$y=x^2$を$C$として,$C$上に点$\mathrm{A}(-1,\ 1)$をとる.正の実数$a$に対して,点$\mathrm{B}(a,\ a^2)$における$C$の接線を$\ell_1$とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_2$とする.また,$C$と$\ell_1$および$x$軸とで囲まれた図形の面積を$S_1$とし,$C$と$\ell_2$で囲まれた図形の$x \geqq 0$の部分の面積を$S_2$とする.このとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)$\displaystyle 2<\frac{S_2}{S_1}<2.01$を満たすための$a$の条件を求めよ.
茨城大学 国立 茨城大学 2014年 第2問
サイコロを$2$回続けて振って出た目の数を順に$a,\ b$とする.このとき,$3$次関数$f(x)=x^3-ax+b$について以下の各問に答えよ.

(1)$f(x)$の極大値と極小値を$a,\ b$を用いて表せ.
(2)$3$次方程式$f(x)=0$が相異なる実数解をちょうど$2$つ持つような$a,\ b$の組を求めよ.
(3)$(2)$で求めた$a,\ b$の組に対して,曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
(4)$f(x)=0$が相異なる$3$つの実数解を持つ確率を求めよ.
和歌山大学 国立 和歌山大学 2014年 第4問
曲線$C:y=e^x$上の点$\mathrm{P}$,$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\log t$,$\log 2t$とし,曲線$C$と直線$\ell,\ m$で囲まれた部分の面積を$S$とする.また,$\ell,\ m$の傾きをそれぞれ$\tan \alpha$,$\tan \beta$とする.ただし,$t>0$,$\displaystyle -\frac{\pi}{2}<\alpha<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\beta<\frac{\pi}{2}$である.このとき,次の問いに答えよ.

(1)$\tan \alpha,\ \tan \beta$および$S$をそれぞれ$t$を用いて表せ.
(2)$\beta-\alpha$が最大となるときの$t$の値を求めよ.
鳥取大学 国立 鳥取大学 2014年 第2問
$x$軸の正の部分を動く点$\mathrm{P}(t,\ 0) (t>0)$と$2$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(0,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を通る円の中心の座標を$t$を用いて表せ.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通り,$x$軸の正の部分に接する円の方程式を求めよ.
(3)$\angle \mathrm{APB}$の大きさを最大にする点$\mathrm{P}$の座標を求めよ.
東京農工大学 国立 東京農工大学 2014年 第4問
$p$を正の実数とする.関数
\[ f(x)=\int_{-1}^x \{p-\log (1+|t|)\} \, dt \]
について,次の問いに答えよ.ただし,対数は自然対数とする.

(1)$f(x)$の極値を求めよ.
(2)$xy$平面の曲線$y=f(x)$が$x$軸の正の部分と$2$点で交わるような,$p$の値の範囲を求めよ.
千葉大学 国立 千葉大学 2014年 第6問
実数$a$に対し,関数$\displaystyle f(x)=\int_x^{x+1} |t+1| \, dt+a$を考える.曲線$C:y=f(x)$が$x$軸と$2$個の共有点を持つための$a$の範囲を求めよ.またこのとき曲線$C$と$x$軸で囲まれる部分の面積を求めよ.
京都教育大学 国立 京都教育大学 2014年 第5問
幅$30 \, \mathrm{cm}$の長方形の金属板を,図$1$の点線で折り曲げて雨どいを作る.図$2$は折り曲げた金属板のどの面にも垂直な平面による断面である.また,$\mathrm{AB}$,$\mathrm{CP}$は水平面に垂直,$\mathrm{AC}$は水平で,$\mathrm{AB}$の長さは$10 \, \mathrm{cm}$であるとする.$\mathrm{CP}$の長さを$x \, \mathrm{cm} (0<x<10)$,雨どいの上記平面による断面積(水が流れることのできる部分の断面積)を$S \, \mathrm{cm}^2$とするとき,次の問に答えよ.ただし,金属板の厚みは無視する.

(1)$S$を$x$で表せ.
(2)$S^2$を考えて,$S$の最大値とそのときの$x$の値を求めよ.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
座標空間内の$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(0,\ 0,\ 3)$と原点$\mathrm{O}$を頂点とする四面体$\mathrm{OABC}$について考える.

四面体$\mathrm{OABC}$を平面$z=t (0<t<3)$で切ったときの切り口の面積を$f(t)$とする.$0<t \leqq 1$のとき$f(t)=[ソ]$である.また,$1<t<3$のとき平面$z=t$と辺$\mathrm{AB}$の交点の座標は$[タ]$となり,$f(t)=[チ]$となる.
次に,四面体$\mathrm{OABC}$において,$2$つの平面$z=t$と$z=t+2 (0<t<1)$の間にはさまれた部分の体積を$g(t)$とすると,その導関数は$g^\prime(t)=[ツ]$であり,$g(t)$は$t=[テ]$のとき最大値をとる.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。