タグ「部分」の検索結果

31ページ目:全894問中301問~310問を表示)
旭川医科大学 国立 旭川医科大学 2014年 第2問
$\displaystyle 0<a \leqq \frac{\pi}{2}$とし,曲線$y=1-\cos x (0 \leqq x \leqq a)$を$C$とする.$0<t<a$とし,原点と$C$上の点$(t,\ 1-\cos t)$を通る直線を$\ell$とおくとき,次の問いに答えよ.

(1)曲線$C$と直線$\ell$とで囲まれた部分の面積を$S_1(t)$,$t \leqq x \leqq a$の範囲で$C$と$\ell$と直線$x=a$とで囲まれた部分の面積を$S_2(t)$とおくとき,$S_1(t)+S_2(t)$を求めよ.
(2)$S_1(t)+S_2(t)$を最小とする$t$の値を$t_0$とするとき,$t_0$を$a$を用いて表せ.

(3)$\displaystyle \lim_{a \to +0} \frac{S_1(t_0)-S_2(t_0)}{a^3}$を求めよ.ただし,$\displaystyle a-\frac{a^3}{3!}<\sin a<a-\frac{a^3}{3!}+\frac{a^5}{5!} (a>0)$は用いてよい.
琉球大学 国立 琉球大学 2014年 第2問
$a,\ b$を実数とし,放物線$y=x(x-a)$を$C$とする.次の問いに答えよ.

(1)$C$上の点$(t,\ t(t-a))$における$C$の接線の方程式を求めよ.
(2)点$(b,\ 0)$から$C$に,相異なる$2$本の接線が引けるとする.このとき$a,\ b$がみたす不等式を求め,その不等式が表す領域を,$ab$平面に図示せよ.
(3)$C$と$x$軸が囲む部分の面積を$S(a)$とする.関数$y=S(a) (-2 \leqq a \leqq 2)$のグラフをかけ.
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第4問
座標平面上に点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{C}(1,\ \sqrt{3})$を頂点とする正三角形$\mathrm{ABC}$をとる.また,点$(-1,\ 0)$,$(0,\ 0)$,$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$を頂点とする正三角形を$x$軸の正の方向に$t$だけ平行移動して得られる正三角形$\mathrm{PQR}$を考える.ただし,$t$は$0$以上の実数とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{PQR}$の共通部分の面積を$f(t)$とするとき,関数$y=f(t)$のグラフの概形を描け.
(2)曲線$y=f(t)$と$t$軸で囲まれた部分の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2014年 第4問
$a$を正の定数とし,曲線$\displaystyle y=\frac{\log x}{a}$を$C$とする.次の問いに答えよ.ただし,対数は自然対数とし,$e$は自然対数の底とする.

(1)点$\displaystyle \left( 0,\ 1-\frac{1}{a} \right)$から曲線$C$に引いた接線の方程式を$a$を用いて表せ.
(2)$(1)$で求めた接線と曲線$C$と$x$軸によって囲まれた部分のうち第$1$象限の部分の面積を$a$を用いて表せ.
(3)曲線$C$が曲線$\displaystyle y=\frac{x^2}{2e}$と共有点をもち,その点における$2$つの曲線の接線が一致しているとき,曲線$C$と曲線$\displaystyle y=\frac{x^2}{2e}$と$x$軸によって囲まれた部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第3問
$xy$平面内の直線$L$を$x-ay+a^2-1=0$とするとき,以下の問いに答えよ.ただし,$a$は実数とする.

(1)直線$L$と$x$軸との交点の座標を$a$を用いて表せ.
(2)直線$L$は$a$が$0$でないとき$y$軸と交わる.このときの$y$軸との交点の座標を$a$を用いて表せ.
(3)直線$L$上の点$(x,\ y)$がとりえる範囲を,$x$と$y$に関する不等式で表せ.
(4)$(3)$で求めた範囲の境界を曲線$C$とする.直線$L$と曲線$C$が接することを示し,接点の座標を$a$を用いて表せ.
(5)$a>0$のとき,直線$L$と$(4)$の曲線$C$および$x$軸で囲まれ,かつ$x \geqq 0$の部分の面積を$a$を用いて表せ.
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
富山大学 国立 富山大学 2014年 第3問
関数$f(x)$と$g(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
|x \log \abs{x|} & (x \neq 0) \phantom{\frac{[ ]}{2}} \\
0 \phantom{\frac{[ ]}{2}} & (x=0)
\end{array} \right. \]
\[ g(x)=-x^2+1 \]
により定める.このとき,次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示し,これを用いて$f(x)$は$x=0$で連続であることを示せ.
(2)$f(x)$の極値を求め,$y=f(x)$のグラフの概形をかけ.
(3)方程式$f(x)=g(x)$の解は$x=-1,\ 1$のみであることを示せ.
(4)$0<r<1$とする.曲線$y=f(x)$と曲線$y=g(x)$によって囲まれた図形のうち,$x \geqq r$の範囲の部分の面積を$S(r)$とおく.このとき,$\displaystyle \lim_{r \to +0} S(r)$を求めよ.
山梨大学 国立 山梨大学 2014年 第2問
$a$は定数で$0 \leqq a \leqq 1$とする.$3$次関数$f(x)=(x+1)x(x-a)$および$g(x)=f(x-1)$を考える.

(1)$2$曲線$y=f(x)$と$y=g(x)$のすべての交点の$x$座標を求めよ.
(2)$2$曲線$y=f(x)$と$y=g(x)$で囲まれた部分を$A$とする.$A$の面積$S(a)$および$A$の$x \leqq a$をみたす部分の面積$S_1(a)$を求めよ.
(3)$(2)$の$A$で不等式$x \geqq a$をみたす部分の面積を$S_2(a)$とする.$S_2(a)$が最大となるときの$a$の値とその最大値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。