タグ「部分」の検索結果

24ページ目:全894問中231問~240問を表示)
早稲田大学 私立 早稲田大学 2015年 第4問
座標平面の第$1$象限に曲線$\displaystyle C_0:y=\frac{1}{x}+x (x>0)$と曲線$\displaystyle C:y=\frac{1}{x} (x>0)$がある.$C_0$上の点$\displaystyle \left( a,\ \frac{1}{a}+a \right)$における$C_0$の接線を$\ell$とする.このとき,$\ell$は曲線$C$と$2$点で交わっているとする.

(1)このように,接線$\ell$と曲線$C$が$2$点で交わる$a$の範囲を求めよ.
(2)接線$\ell$と曲線$C$とで囲まれた部分の面積を求めよ.
(3)上の$(2)$で求めた面積を$S(a)$とするとき,
\[ \frac{a^3}{1-a^2}<S(a)<\frac{2a}{1-a^2} \]
が成り立つことを示せ.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第3問
原点を$\mathrm{O}$とする座標平面において点$\mathrm{R}(a,\ b) (a>0,\ b>0)$をとる.$x$軸の正の部分に点$\mathrm{P}$を,$y$軸の正の部分に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{R}$を通るようにとる.以下,$\displaystyle \angle \mathrm{OPQ}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$とおく.

(1)線分$\mathrm{PQ}$の長さを,$\theta$および$a,\ b$を用いて表しなさい.
(2)線分$\mathrm{PQ}$の長さを最小にする角$\theta$に対して,$\tan \theta$および線分$\mathrm{PQ}$の長さを$a,\ b$を用いて表しなさい.
(3)$a=1$,$b=8$とする.三角形$\mathrm{OPQ}$の$3$辺の長さの和を最小にする角$\theta$に対して,$\tan \theta$の値および線分$\mathrm{PQ}$の長さを求めなさい.
東北学院大学 私立 東北学院大学 2015年 第3問
放物線$C:y=x^2-x$について以下の問いに答えよ.ただし$a>0$とする.

(1)点$(0,\ -a)$を通る$C$の$2$つの接線の方程式およびそれぞれの接点の座標を求めよ.
(2)$(1)$で求めた$2$つの接点を通る直線および$C$で囲まれた部分の面積を求めよ.
(3)$(1)$で求めた$2$つの接線および$C$で囲まれた部分の面積を求めよ.
東北学院大学 私立 東北学院大学 2015年 第4問
関数$f(x)=x+x \sqrt{1-x^2}$について以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.ただし変曲点は求めなくてよい.
(3)$y=f(x)$のグラフと直線$y=x$で囲まれた部分の面積を求めよ.
福岡大学 私立 福岡大学 2015年 第10問
関数$\displaystyle f(x)=\log (1+\sqrt{2+x})-\frac{1}{2} \sqrt{2+x}$について,次の問いに答えよ.ただし,対数は自然対数とする.

(1)関数$y=f(x)$の極値を求めよ.
(2)曲線$y=f(x)$および直線$\displaystyle y=\frac{\log 3-1}{4}x+\frac{\log 3-1}{2}$とで囲まれる部分の面積を求めよ.
広島工業大学 私立 広島工業大学 2015年 第4問
放物線$y=x^2+ax+b$と$x$軸との交点の座標は$(\sin \theta,\ 0)$,$(\sqrt{3} \cos \theta,\ 0)$である.この放物線と$x$軸とで囲まれる部分の面積を$S$とするとき,次の問いに答えよ.ただし,$a,\ b$は定数とし,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$とする.

(1)$a,\ b$を$\theta$を用いて表せ.
(2)$a=0$のとき,$S$の値を求めよ.
(3)$S$の最大値を求めよ.
東洋大学 私立 東洋大学 2015年 第2問
実数$k$は$0<k<2$をみたし,$xy$平面上の曲線$C$を$y=-x^2+4 (x \geqq 0)$,直線$\ell$を$y=4-k^2$とする.次の各問に答えよ.

(1)$y$軸,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_1$とすると,$\displaystyle S_1=\frac{[ア]}{[イ]}k^{\mkakko{ウ}}$となる.
(2)直線$x=2$,曲線$C$,直線$\ell$で囲まれる部分の面積を$S_2$とすると,
\[ S_2=\frac{[エ]}{[オ]}k^{\mkakko{カ}}-[キ]k^{\mkakko{ク}}+\frac{[ケ]}{[コ]} \]
となる.
(3)$2$つの面積の和$S=S_1+S_2$を考える.$S$の最小値は$[サ]$である.このとき$k=[シ]$である.
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上に点$\mathrm{A}(a^3,\ b^3)$がある.ただし,$a>0$,$b>0$とする.点$\mathrm{A}$を通る直線$\ell$が$x$軸,$y$軸の正の部分と交わり,それぞれの交点を$\mathrm{P}$,$\mathrm{Q}$とする.直線$\ell$が$x$軸となす鋭角を$\theta$とし,線分$\mathrm{PQ}$の長さを$f(\theta)$とする.このとき,以下の問いに答えよ.

(1)$f(\theta)$を$a,\ b,\ \sin \theta,\ \cos \theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$f(\theta)$が最小となる$\theta$の値を$\alpha$とおく.$\tan \alpha$と$f(\alpha)$をそれぞれ$a,\ b$を用いて表せ.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。