タグ「部分」の検索結果

18ページ目:全894問中171問~180問を表示)
高知大学 国立 高知大学 2015年 第4問
$0 \leqq t<2\pi$とする.関数$f(x)=2x^2+(2+\sin t)x+\cos^2 t-2$について,次の問いに答えよ.

(1)$\displaystyle t=\frac{\pi}{2}$のとき,$y=f(x)$の最小値を求めよ.
(2)$t$がどのような値であっても,$y=f(x)$のグラフは$x$軸と異なる$2$つの共有点を持つことを示せ.
(3)$y=f(x)$のグラフが,$x$軸から切り取る線分の長さの最小値を求めよ.
(4)$(3)$のとき,$y=f(x)$のグラフと$x$軸で囲まれた部分の面積$S$を求めよ.
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
福岡教育大学 国立 福岡教育大学 2015年 第4問
$a$を正の定数とし,曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸によって囲まれる部分の面積が$\sqrt{3}-1$であるとする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$の交点を求めよ.
(3)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$と$y$軸によって囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2015年 第3問
$a$を定数とし,$\displaystyle 0<a<\frac{\pi}{2}$とする.媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\cos^3 t \\
y=\sin^3 t \phantom{2^{\mkakko{}}} \!\!\!\!\!\!\!\!\!\!
\end{array} \right. \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表される曲線を$C$とする.また,$C$の$0 \leqq t \leqq a$の部分の長さを$L$とする.

(1)$L$を$a$を用いて表せ.ただし,$L$は$\displaystyle L=\int_0^a \sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$と表される.
(2)曲線$C$上の点$\mathrm{P}(\cos^3 a,\ \sin^3 a)$における接線$\ell$の方程式を求めよ.また,$\ell$と$x$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$M$とするとき,$\displaystyle L=\frac{3}{2}M$が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第5問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と直線$x=1$,および$x$軸,$y$軸で囲まれた部分を,$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
福井大学 国立 福井大学 2015年 第5問
$2$つの関数$f(x)=x^2+4$,$g(x)=x^2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線の方程式を求めよ.
(2)$(1)$で求めた接線と,曲線$y=g(x)$との交点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$y=g(x)$の,点$\mathrm{A}$における接線と点$\mathrm{B}$における接線との交点を$\mathrm{C}$とする.点$\mathrm{C}$の座標を求めよ.また,点$\mathrm{C}$は曲線$y=x^2-4$上にあることを示せ.
(3)直線$\mathrm{AB}$と曲線$y=g(x)$で囲まれた部分の面積は,$a$の値によらずに一定であることを示せ.
山梨大学 国立 山梨大学 2015年 第2問
次の問いに答えよ.

(1)関数$y=3 |x^2-2x-3|$のグラフをかけ.
(2)$1<t<3$を満たす定数$t$を考える.曲線$y=3 |x^2-2x-3|$の$t \leqq x \leqq t+2$における部分と$x$軸,および$2$直線$x=t$,$x=t+2$で囲まれた図形の面積$S(t)$を求めよ.
(3)$t$が$1<t<3$の範囲を動くときの$S(t)$の最小値と,そのときの$t$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
東京学芸大学 国立 東京学芸大学 2015年 第2問
$n$を$2$以上の整数とする.曲線$\displaystyle y=\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$,直線$\displaystyle x=\frac{\pi}{2}$および$x$軸で囲まれる部分の面積を$n-1$本の曲線$y=a_k \cos x (k=1,\ 2,\ \cdots,\ n-1)$によって$n$等分するとき,下の問いに答えよ.ただし,$0<a_1<a_2<\cdots<a_{n-1}$とする.

(1)$n=2$のとき,$a_1$の値を求めよ.
(2)$a_k$を$n$と$k$で表せ.
茨城大学 国立 茨城大学 2015年 第2問
放物線$C:y=-a^2 x^2+1$と直線$\ell:y=a(x+1)$について,次の各問に答えよ.ただし,$a$は$a>0$を満たす定数とする.

(1)$C$と$\ell$が異なる$2$つの共有点をもつとき,$a$の値の範囲を求めよ.
(2)$\ell$が$C$に接するとき,不等式$x \leqq 0$の表す領域内において$C$と$\ell$および$x$軸で囲まれた部分の面積を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。