タグ「選択肢」の検索結果

2ページ目:全21問中11問~20問を表示)
桜美林大学 私立 桜美林大学 2014年 第2問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=x^2-2x \cos \theta+\sin^2 \theta$について,以下の問に答えなさい.空欄には下の選択肢から選びその番号をマークしなさい.

(1)$f(x)$の最小値が$0$となるのは,$\theta=[テ],\ [ト]$のときである.ただし,$[テ]<[ト]$とする.
(2)方程式$f(x)=0$が実数解をもたないとき,$\theta$の取りうる値の範囲は,$[ナ]<\theta<[ニ]$である.
(3)方程式$f(x)=0$の$2$つの解がともに負となるとき,$\theta$の取りうる値の範囲は$[ヌ] \leqq \theta<[ネ]$である.
\begin{screen}
選択肢: $\displaystyle \nagamarurei \ 0 \quad \nagamaruichi \ \frac{\pi}{6} \quad \nagamaruni \ \frac{\pi}{4} \quad \nagamarusan \ \frac{\pi}{3} \quad \nagamarushi \ \frac{\pi}{2} \quad \nagamarugo \ \frac{2\pi}{3} \quad \nagamaruroku \ \frac{3\pi}{4} \quad \nagamarushichi \ \frac{5\pi}{6} \quad \nagamaruhachi \ \pi$
\end{screen}
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
松山大学 私立 松山大学 2014年 第1問
次の各問の答えとして正しいものを選択肢から選びなさい.

(1)${10}^{-7} \times {10}^{-7}=[ア]$
\[ \nagamaruichi {10}^{14} \qquad \nagamaruni {10}^{-49} \qquad \nagamarusan {10}^{-14} \qquad \nagamarushi {10}^{49} \qquad \nagamarugo 10 \]
(2)$y={10}^{-x}$のグラフは$[イ]$である.
(図は省略)
(3)$\displaystyle y=\frac{Bx}{A+x}$($A,\ B$は正の定数)において,$\displaystyle y=\frac{B}{2}$のときの$x$の値は,$[ウ]$である.
\[ \nagamaruichi B \qquad \nagamaruni A \qquad \nagamarusan \frac{A}{B} \qquad \nagamarushi \frac{B}{A} \qquad \nagamarugo AB \]
次の空所$[エ]$~$[テ]$を埋めよ.

(4)$\displaystyle \frac{-12}{(x+1)(x-3)}=\frac{[エ]}{x+1}+\frac{[オカ]}{x-3}$

(5)$\displaystyle \left( \sqrt{8}-\sqrt{\frac{4}{3}} \right) \left( \sqrt{\frac{3}{4}}+\sqrt{18} \right)=[キク]-\sqrt{[ケ]}$
(6)$(4^{\frac{3}{2}})^{\frac{-4}{3}}=\frac{[コ]}{[サシ]}$
(7)$\displaystyle \frac{1}{2} \log_2 6-\log_4 24=[スセ]$
(8)$(4x^2+5x-4) \div (x-2)=[ソ]x+[タチ]$,余り$[ツテ]$
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第3問
$\mathrm{O}$を中心とする半径$1$の円周上に相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \neq \overrightarrow{\mathrm{0}}$とする.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$,$\overrightarrow{\mathrm{OR}}=\overrightarrow{r}$とおく.

このとき,以下の$[$1$]$~$[$6$]$について適切な値を,$[イ]$には適切な式を解答欄に答えなさい.また,$[ア]$,$[ウ]$には下部の選択肢からもっともふさわしいものを選択して,解答欄に記入しなさい.
ベクトル$\displaystyle \overrightarrow{d}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$とすると,
\[ |\overrightarrow{d}-\overrightarrow{p}|=|\overrightarrow{d}-\overrightarrow{q}|=|\overrightarrow{d}-\overrightarrow{r}|=[$1$] \]
となり,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$によって定まる点$\mathrm{D}$は$\triangle \mathrm{PQR}$の$[ア]$となることがわかる.
いま,線分$\mathrm{AB}$の長さを$1$,線分$\mathrm{AC}$の長さを$\sqrt{3}$とし,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は,どの$2$つも平行ではないとする.このとき,線分$\mathrm{BC}$の長さは$[$2$]$であり,$\overrightarrow{a} \cdot \overrightarrow{c}=[$3$]$である.また,$\overrightarrow{b}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,$\overrightarrow{b}=[イ]$となる.
また,$\triangle \mathrm{PQR}$について,$\angle \mathrm{QPR}$の二等分線と辺$\mathrm{QR}$の交点を$\mathrm{S}$とおき,$\overrightarrow{\mathrm{PS}}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,
\[ \overrightarrow{\mathrm{PS}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{c} \]
とかける.同様にして,$\angle \mathrm{PQR}$の二等分線と辺$\mathrm{PR}$の交点を$\mathrm{T}$とおく.線分$\mathrm{PS}$と線分$\mathrm{QT}$の交点を$\mathrm{U}$とおくと,$\mathrm{U}$は$\triangle \mathrm{PQR}$の$[ウ]$となり,
\[ \overrightarrow{\mathrm{OU}}=[$6$] \overrightarrow{b} \]
となることがわかる.
\begin{screen}
選択肢: \quad 重心, \quad 内心, \quad 外心
\end{screen}
上智大学 私立 上智大学 2012年 第3問
日本全国から$6$つの市を選ぶ.その$6$つの市に関する条件$(\mathrm{A})$~$(\mathrm{G})$を考える.

\mon[$(\mathrm{A})$] $6$つの市の中に,人口$10$万人以上の市が存在する.
\mon[$(\mathrm{B})$] $6$つの市の中に,人口$10$万人以上の市がただ$1$つ存在する.
\mon[$(\mathrm{C})$] $6$つの市の中に,人口$10$万人以上の市が$2$つ以上存在する.
\mon[$(\mathrm{D})$] $6$つの市の人口はすべて$10$万人以上である.
\mon[$(\mathrm{E})$] $6$つの市の中に,人口$10$万人未満の市が存在する.
\mon[$(\mathrm{F})$] $6$つの市の人口はすべて$10$万人未満である.
\mon[$(\mathrm{G})$] $6$つの市の中に,人口$10$万人以上の市と人口$10$万人未満の市が存在する.


(1)条件$(\mathrm{A})$~$(\mathrm{G})$の中で,互いに否定条件となるすべての組を以下の選択肢から選べ.もし互いに否定条件となる組で選択肢にないものが存在するときは,$z$もマークせよ.

選択肢:
1. (A)と(E) \qquad 2. (A)と(F) \qquad 3. (B)と(C)
4. (B)と(E) \qquad 5. (B)と(F) \qquad 6. (B)と(G)
7. (D)と(E) \qquad 8. (D)と(F) \qquad 9. (D)と(G)
10. (E)と(F) \qquad 11. (E)と(G) \qquad 12. (F)と(G)

(2)条件$(\mathrm{A})$~$(\mathrm{G})$の中から,$(\mathrm{A})$であるための十分条件となる,$(\mathrm{A})$以外の条件をすべて選べ.
(3)条件$(\mathrm{A})$~$(\mathrm{G})$の中から,$(\mathrm{E})$であるための十分条件となる,$(\mathrm{E})$以外の条件をすべて選べ.
(4)条件$(\mathrm{A})$~$(\mathrm{G})$の中から,$(\mathrm{B})$であるための必要条件となる,$(\mathrm{B})$以外の条件をすべて選べ.
(5)条件$(\mathrm{A})$~$(\mathrm{G})$の中から,$(\mathrm{D})$であるための必要条件となる,$(\mathrm{D})$以外の条件をすべて選べ.
上智大学 私立 上智大学 2012年 第2問
$a$を実数とし,放物線$C:y=x^2-2ax+4a$を考える.

(1)$C$が直線$y=-6x$と接するのは,$a=[タ]$または$a=[チ]$のときである.ただし,$[タ]<[チ]$とする.
(2)$a$がすべての実数を動くとき,$C$の頂点の軌跡の方程式は
\[ y=[ツ]x^2+[テ]x+[ト] \]
である.
(3)$C$が点$(x,\ y)$を通るような$a$が存在するための必要十分条件は
\[ \bigg(x \quad [あ] \quad [ナ] \bigg) \quad [い] \quad \bigg(y \quad [う] \quad [ニ] \bigg) \]
である.
(4)点$(3,\ -1)$を通る$C$の接線が存在するための必要十分条件は
\[ a \quad [え] \quad [ヌ] \]
である.
\begin{screen}
$[あ],\ [う],\ [え]$の選択肢: \\
$(a) < \qquad (b) \leqq \qquad (c) > \qquad (d) \geqq \qquad (e) = \qquad (f) \neq$ \\
$[い]$の選択肢: \\
$(a) $かつ \qquad $(b) $または
\end{screen}
上智大学 私立 上智大学 2012年 第3問
$10$人ずつの男女に関する条件$(\mathrm{A})$~$(\mathrm{E})$を考える.

\mon[$(\mathrm{A})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,帽子をかぶっていて腕時計をしていない人がいる.
\mon[$(\mathrm{B})$] 帽子をかぶっている人がいるならばその人は男性であり,かつ,腕時計をしていて帽子をかぶっていない人がいる.
\mon[$(\mathrm{C})$] 女性ならば帽子をかぶっておらず,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{D})$] 帽子をかぶっている男性がおり,かつ,腕時計をしている人がいるならばその人は帽子をかぶっている.
\mon[$(\mathrm{E})$] 帽子をかぶっている女性がおり,かつ,帽子をかぶっている人がいるならばその人は腕時計をしている.


(1)選択肢の中から$(\mathrm{A})$であるための必要条件を全てマークせよ.例えば,「$(\mathrm{A}) \Longrightarrow (\mathrm{a})$」が真であるときは$\mathrm{a}$をマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(2)選択肢の中から$(\mathrm{B})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(3)選択肢の中から$(\mathrm{C})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(4)選択肢の中から$(\mathrm{D})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.
(5)選択肢の中から$(\mathrm{E})$であるための必要条件を全てマークせよ.ただし,必要条件が選択肢の中になければ$z$をマークせよ.

選択肢:
$(\mathrm{a})$ 腕時計をしている人がいるならばその人は男性である.
$(\mathrm{b})$ 腕時計をしている男性がいる.
$(\mathrm{c})$ 腕時計をしている人がいるならばその人は女性である.
$(\mathrm{d})$ 腕時計をしている女性がいる.
$(\mathrm{e})$ 腕時計をしていない男性がいる.
$(\mathrm{f})$ 腕時計をしていない女性がいる.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$(ⅰ)$~$(ⅲ)$のそれぞれの場合について,$3$つの実数$A,\ B,\ C$の大小関係を,下の選択肢から選べ.

(i) $A=\sin 1^\circ$,$B=\tan 1^\circ$,$C=1-\cos 2^\circ$
(ii) $A=\comb{150}{80}$,$B=\comb{150}{81}$,$C=\comb{151}{81}$

(iii) $\displaystyle A=\frac{10}{\pi}$,$B=\sqrt{10}$,$\displaystyle C=\frac{1}{\tan 15^\circ}$


選択肢: \quad $(\mathrm{a}) A>B>C \qquad (\mathrm{b}) A>C>B \qquad (\mathrm{c}) B>A>C$
\qquad\qquad \;\;\; $(\mathrm{d}) B>C>A \qquad (\mathrm{e}) C>A>B \qquad (\mathrm{f}) C>B>A$

(2)$\tan \alpha=-\sqrt{7} (0^\circ<\alpha<180^\circ)$のとき
\[ \cos \alpha=\frac{[ア] \sqrt{[イ]}}{[ウ]} \]
である.
(3)$a,\ b$は自然数で,$\displaystyle \frac{a^2}{b}$の整数部分は$6$桁であり,$\displaystyle \frac{b^2}{a}$は小数第$3$位にはじめて$0$でない数字が現われる$1$より小さい数である.このとき,$a$は$[エ]$桁または$[オ]$桁,$b$は$[カ]$桁である.ただし$[エ]<[オ]$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\mathrm{X}$大学には$5$つの学部があり,全ての学部で入学試験を行っている.次の$7$つの命題$(\mathrm{A})$~$(\mathrm{G})$の中で,お互いに否定命題となっている全ての組を以下の選択肢から選べ.もし,否定命題となっている組で選択肢にないものが存在するときは,$z$もマークせよ.

$(\mathrm{A})$ $\mathrm{X}$大学のある学部の入学試験科目には,数学がある.
$(\mathrm{B})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学があるのはただ一つである.
$(\mathrm{C})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がある.
$(\mathrm{D})$ $\mathrm{X}$大学には,入学試験科目に数学がない学部がある.
$(\mathrm{E})$ $\mathrm{X}$大学の全ての学部の入学試験科目には,数学がない.
$(\mathrm{F})$ $\mathrm{X}$大学の学部の中で,入学試験科目に数学がないのはただ一つである.
$(\mathrm{G})$ $\mathrm{X}$大学には,入学試験科目に数学がある学部とない学部の両方がある.

選択肢:
\[ \begin{array}{rlp{1mm}rlp{1mm}rlp{1mm}rl}
1. & (\mathrm{A}) \text{と} (\mathrm{C}) & & 2. & (\mathrm{A}) \text{と} (\mathrm{D}) & & 3. & (\mathrm{A}) \text{と} (\mathrm{E}) & & 4. & (\mathrm{A}) \text{と} (\mathrm{G}) \\
5. & (\mathrm{B}) \text{と} (\mathrm{F}) & & 6. & (\mathrm{B}) \text{と} (\mathrm{G}) & & 7. & (\mathrm{C}) \text{と} (\mathrm{D}) & & 8. & (\mathrm{C}) \text{と} (\mathrm{E}) \\
9. & (\mathrm{C}) \text{と} (\mathrm{G}) & & 10. & (\mathrm{D}) \text{と} (\mathrm{E}) & & 11. & (\mathrm{D}) \text{と} (\mathrm{G}) & & 12. & (\mathrm{E}) \text{と} (\mathrm{F})
\end{array} \]
(2)$f(0)=1$,$g(0)=2$を満たす$2$つの整式$f(x)$,$g(x)$に対して$p(x)=f(x)+g(x)$,$q(x)=f(x)g(x)$とおく.$\displaystyle \frac{d}{dx}p(x)=3$,$\displaystyle \frac{d}{dx}q(x)=4x+k$であるとき,$k=[ア]$または$[イ]$である.ただし$[ア]<[イ]$である.
(3)方程式$4^{x+1}+3 \cdot 2^x-1=0$の解は$x=[ウ]$である.
スポンサーリンク

「選択肢」とは・・・

 まだこのタグの説明は執筆されていません。