タグ「運動」の検索結果

1ページ目:全12問中1問~10問を表示)
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
京都大学 国立 京都大学 2014年 第2問
$2$つの粒子が時刻$0$において$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$に位置している.これらの粒子は独立に運動し,それぞれ$1$秒ごとに隣の頂点に等確率で移動していくとする.たとえば,ある時刻で点$\mathrm{C}$にいる粒子は,その$1$秒後には点$\mathrm{A}$または点$\mathrm{B}$にそれぞれ$\displaystyle \frac{1}{2}$の確率で移動する.この$2$つの粒子が,時刻$0$の$n$秒後に同じ点にいる確率$p(n)$を求めよ.
九州工業大学 国立 九州工業大学 2014年 第3問
関数$s(t)$はつねに$s^\prime(t)>0$をみたし,$s(0)=0$とする.座標平面上を運動する点$\mathrm{P}$の座標$(x,\ y)$は,時刻$t$の関数として$x=s(t)$,$\displaystyle y=\frac{1}{2} \{s(t)\}^2$で与えられ,点$\mathrm{P}$の速度$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$は
\[ |\overrightarrow{v}|=\frac{1}{\sqrt{1+\{s(t)\}^2}} \]
をみたすとする.また,$\displaystyle \alpha=s \left( -\frac{4}{3} \right)$,$\displaystyle \beta=s \left( \frac{4}{3} \right)$とおく.次に答えよ.

(1)$\displaystyle \frac{dx}{dt}=f(x)$が成り立つように関数$f(x)$を定めよ.
(2)$\displaystyle \frac{4}{3}=\int_{-\frac{4}{3}}^0 \frac{1}{f(x)} \frac{dx}{dt} \, dt$,$\displaystyle \frac{4}{3}=\int_0^{\frac{4}{3}} \frac{1}{f(x)} \frac{dx}{dt} \, dt$を用いて,$\alpha$と$\beta$の値を求めよ.
(3)$\displaystyle \frac{d^2x}{dt^2}=g(x)$が成り立つように関数$g(x)$を定めよ.また,$\alpha \leqq x \leqq \beta$のとき$g(x)$が最大となる$x$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第1問
原点を$\mathrm{O}$とする座標平面上を運動する点$\mathrm{P}(x,\ y)$が
\[ x=\sin t,\quad y=\sin 2t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
で表されるとき,点$\mathrm{P}$の描く曲線を$C$とする.($C$は右図のように \\
なっている.)以下の各問に答えよ.
\img{85_2188_2013_1}{40}


(1)曲線$C$と$x$軸が囲む図形の面積を求めよ.
(2)$\displaystyle 0<t<\frac{\pi}{2}$のとき,点$\mathrm{P}$における$C$の接線$\ell$の方程式を求めよ.
(3)$\displaystyle 0<t<\frac{\pi}{2}$のとき,(2)の接線$\ell$の傾きが負になる$t$の範囲を求めよ.
(4)$t$が(3)で求めた範囲にあるとき,$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,三角形$\mathrm{OPQ}$と三角形$\mathrm{OPR}$の面積をそれぞれ$S$と$T$とする.$c=\cos t$として,$S,\ T$をそれぞれ$c$を用いて表せ.
(5)(4)の$S$と$T$について$S=T$が成り立つとき,直線$\mathrm{OP}$の方程式を求めよ.
岡山県立大学 公立 岡山県立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \sum_{k=1}^{2013} \frac{1}{\sum_{j=1}^k j}$を求めよ.
(2)実数$a,\ b$を係数とする$2$次方程式$x^2+ax+b=0$が異なる$2$つの虚数解をもつ.$1$つの虚数解を$\alpha$とすると,他の解は$2 \alpha-4+3i$と表すことができる.このとき,$a,\ b$の値を求めよ.ただし,$i$は虚数単位である.
(3)座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=\cos 2t,\quad y=\sin t \]
で表されるとき,点$\mathrm{P}$の速さは
\[ v=\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \]
である.次の問いに答えよ.

(i) $v^2$を$\cos t$で表せ.
(ii) $v$の最大値を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第4問
座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=2t-\sin 2t,\quad y=1-\cos 2t \quad (0 \leqq t \leqq \pi) \]
で表される.

(1)点$\mathrm{P}$の時刻$\displaystyle t=\frac{\pi}{6}$における速度は$([コ],\ \sqrt{[サ]})$である.
(2)点$\mathrm{P}$の速さは$2 \sqrt{[シ]([ス]-\cos [セ]t)}$であり,その速さは$\displaystyle t=\frac{\pi}{[ソ]}$のとき最大値$[タ]$をとる.
(3)点$\mathrm{P}$の加速度は,その大きさが一定の値$[チ]$をとり,$x$軸の正の方向を向くのは$\displaystyle t=\frac{\pi}{[ツ]}$のときであり,$x$軸の負の方向を向くのは$\displaystyle t=\frac{[テ]}{[ト]} \pi$のときである.
奈良教育大学 国立 奈良教育大学 2011年 第1問
以下の設問に答えよ.

(1)初項$a$,公比$r$の無限等比級数は$|\,r\,|<1$のとき収束し,その和が$\displaystyle \frac{a}{1-r}$となることを示せ.
(2)座標平面上で,動点Pが点$(1,\ 1)$から$x$軸の負の向きに1だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3}$だけ進み,次に$x$軸の負の向きに$\displaystyle \frac{1}{3^2}$だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3^3}$だけ進む.以下,動点Pがこのような運動を続けるとき,動点Pが限りなく近づく点の座標を求めよ.
大阪市立大学 公立 大阪市立大学 2011年 第2問
座標空間を運動する$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の時刻$t$における座標をそれぞれ$(t,\ 0,\ t)$,$(\sqrt{2}t,\ 1-2t,\ \sqrt{2}(1-t))$,$(-t,\ -\sqrt{2}t,\ t)$とする.原点を$\mathrm{O}$と記すとき,次の問いに答えよ.ただし,$\displaystyle 0<t<\frac{1}{2}$とする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{OC}}$を示せ.
(2)$\triangle \mathrm{ABC}$の面積$S(t)$は$t(1-2t)$であることを示せ.
(3)四面体$\mathrm{OABC}$の体積$V(t)$の$\displaystyle 0<t<\frac{1}{2}$における最大値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2t-t^2,\quad y=1-t^2 \quad (0 \leqq t \leqq 1) \]
で与えられている.このとき,点Pの描く曲線を$C$とおく.

(1)$0<t<1$の範囲で,点Pの速さ(速度の大きさ)が最小になる時刻$t$を求めよ.
(2)(1)で求めた時刻$t$に対応する$C$上の点における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$は,接点以外に共有点を持たないことを示せ.
(4)曲線$C$,接線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
香川大学 国立 香川大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標を
\[ x=e^t \cos t, y=e^t \sin t \]
とするとき,次の問に答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$およびその大きさ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle t=\frac{\pi}{2}$のとき,ベクトル$\overrightarrow{v}$が$x$軸の正の向きとのなす角$\alpha$を求めよ.
(3)原点をOとするとき,ベクトル$\overrightarrow{v}$とベクトル$\overrightarrow{\mathrm{OP}}$のなす角$\theta$は一定であることを示し,$\theta$を求めよ.
スポンサーリンク

「運動」とは・・・

 まだこのタグの説明は執筆されていません。