タグ「連続」の検索結果

10ページ目:全114問中91問~100問を表示)
立教大学 私立 立教大学 2011年 第1問
下記の空欄イ~ホにあてはまる数を記入せよ.

(1)方程式$3\cos^3 \theta-5 \cos^2 \theta-4 \cos \theta+4=0$,および不等式$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$をみたす$\theta$に対して,$\cos \theta=[イ]$である.
(2)公差$\displaystyle \frac{1}{5}$,初項$-8$の等差数列$a_1,\ a_2,\ \cdots$を
\[ a_1 \;|\; a_2,\ a_3 \;|\; a_4,\ a_5,\ a_6 \;|\; a_7,\ a_8,\ a_9,\ a_{10} \;|\; \cdots \]
とグループ分けする.第$101$番目のグループに属する数の和は$[ロ]$である.
(3)空間に$3$点$\mathrm{A}(2,\ 2,\ 2)$,$\mathrm{B}(1,\ 2,\ 1)$,$\mathrm{C}(2,\ y,\ 1)$が与えられている.三角形$\mathrm{ABC}$が直角三角形になるのは$y=[ハ]$のときである.

(4)極限$\displaystyle \lim_{x \to 0} \frac{\sin (1-\cos x)}{x^2}$の値は$[ニ]$である.

(5)$1$個のさいころを$4$回続けて投げるとき,$3$回以上連続して同じ目が出る確率は$[ホ]$である.
北海学園大学 私立 北海学園大学 2011年 第2問
$5$個のさいころを同時に投げるとき,次の問いに答えよ.

(1)$5$個のさいころすべてに同じ目が出る確率を求めよ.
(2)$3$個のさいころに同じ目が出て,かつ残りの$2$個のさいころにも同じ目が出る確率を求めよ.ただし,$3$個のさいころに出た同じ目と$2$個のさいころに出た同じ目は異なるとする.
(3)出た目が連続した$5$つの数の組合せになる確率を求めよ.
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
上智大学 私立 上智大学 2011年 第3問
ボタンを押すと,$0$と$1$のどちらか一方の数字を表示する機械がある.ボタンを連続して押すとき,直前に表示された数字と同じ数字が再び表示される確率は$\displaystyle \frac{2}{3}$,違う数字の表示される確率は$\displaystyle \frac{1}{3}$である.ただし,始めにボタンを押すときには,$0$と$1$が表示される確率は等しい.

(1)$4$回連続してボタンを押すとき,$4$回とも同じ数字が表示される確率は$\displaystyle \frac{[ヒ]}{[フ]}$である.また,$4$回目に表示された数字が$1$である確率は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
(2)$4$回連続してボタンを押すときに表示される数字の合計が$1$である確率は$\displaystyle \frac{[マ]}{[ミ]}$である.また,合計が$2$である確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)始めに表示された数字が$1$のとき,さらに$4$回連続してボタンを押して表示される$4$つの数字の合計が$2$である確率は$\displaystyle \frac{[モ]}{[ヤ]}$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第11問
$1$個のさいころを$3$回続けて投げるという試行に関して,次の確率を求めよ.

(1)$3$回連続で同じ目が出る確率.
(2)$3$回連続で偶数が出る確率.
(3)$3$回とも互いに異なる目が出る確率.
(4)$2$回続けて同じ目が出ない確率.
(5)出た目の合計が$16$以上になる確率.
岡山県立大学 公立 岡山県立大学 2011年 第1問
次の問いに答えよ.

(1)$\sqrt{n^2+27}$が整数であるような自然数$n$をすべて求めよ.
(2)$a$を実数とする.$x>0$で定義された連続関数$f(x)$が,すべての$x>0$に対して
\[ \int_1^x f(t) \, dt =(\log x)^2+a^3x-2a-4 \]
を満たすとき,$a$の値と$f(x)$を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第1問
次の問いに答えよ.

(1)$f(x)$を連続関数とするとき,
\[ \int_0^\pi x f(\sin x) \, dx = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx \]
が成り立つことを示せ.
(2)定積分
\[ \int_0^\pi \frac{x \sin^3 x}{\sin^2 x+8} \, dx \]
の値を求めよ.
信州大学 国立 信州大学 2010年 第2問
ある奇数の自然数$m$から始まる連続する奇数個の自然数の和が$2010$である.$m$を求めよ.
スポンサーリンク

「連続」とは・・・

 まだこのタグの説明は執筆されていません。