タグ「連立方程式」の検索結果

3ページ目:全35問中21問~30問を表示)
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
関西大学 私立 関西大学 2012年 第1問
$x$と$y$についての連立方程式
\[ \left\{ \begin{array}{l}
3^{x+2y}+2^{4x+2y-3}=\displaystyle \frac{97}{3} \\ \\
3^{x+2y+2}-4^{2x+y-2}=-13
\end{array} \right. \qquad \cdots\cdots(*) \]
を考える.次の問いに答えよ.

(1)$X=3^{x+2y},\ Y=2^{4x+2y}$とおいて,連立方程式$(*)$を$X,\ Y$についての連立$1$次方程式に書きかえて,それを解いて$X$と$Y$の値を求めよ.
(2)連立方程式$(*)$を解け.
広島修道大学 私立 広島修道大学 2012年 第1問
次の各問に答えよ.

(1)方程式$|x-2|+|3x+3|=11$を解け.
(2)連立方程式
\[ \left\{ \begin{array}{l}
x+3y=14 \\
\log_{\sqrt{2}} (x-y)=2
\end{array} \right. \]
を解け.
(3)$a,\ b,\ c$を定数とする.関数$f(x)=x^3+ax^2+bx+c$が$f(3)=16$,$f^\prime(2)=f^\prime(-2)=9$を満たすとき,$a,\ b,\ c$の値を求めよ.
(4)$(3)$で求めた関数$f(x)$の増減を調べて,極値を求めよ.
筑波大学 国立 筑波大学 2011年 第3問
$a$を$\displaystyle 0 < \alpha <\frac{\pi}{2}$を満たす定数とする.円$C : x^2 + (y+ \sin \alpha)^2 = 1$および,その中心を通る直線$\ell :y= (\tan \alpha) x - \sin \alpha$を考える.このとき,以下の問いに答えよ.

(1)直線$\ell$と円$C$の2つの交点の座標を$\alpha$を用いて表せ.
(2)等式
\[ 2\int_{\cos \alpha}^1 \sqrt{1-x^2} \, dx+ \int_{-\cos \alpha}^{\cos \alpha} \sqrt{1-x^2} \, dx = \frac{\pi}{2} \]
が成り立つことを示せ.
(3)連立方程式
\[ \left\{
\begin{array}{l}
y \leqq (\tan \alpha)x-\sin \alpha \\
x^2+(y+\sin \alpha)^2 \leqq 1
\end{array}
\right. \]
の表す$xy$平面上の図形を$D$とする.図形$D$を$x$軸のまわりに1回転させてできる立体の体積を求めよ.
西南学院大学 私立 西南学院大学 2011年 第1問
$a,\ b$を実数の定数とする.$x$と$y$についての連立方程式
\[ \left\{ \begin{array}{l}
y=|x-1|-|x-2| \\
y=ax^2+bx
\end{array} \right. \]
について以下の問に答えよ.

(1)$a=0$,$b=0$のとき,解の組は$\displaystyle (x,\ y)=\left( \frac{[ア]}{[イ]},\ [ウ] \right)$である.
(2)$a=0$のとき連立方程式の解の組$(x,\ y)$が$3$個あるのは,$\displaystyle [エ]<b<\frac{[オ]}{[カ]}$のときである.
(3)$b=0$のとき連立方程式の解の組$(x,\ y)$が$2$個あるのは,$a<[キ]$または$\displaystyle [ク]<a<\frac{[ケ]}{[コ]}$のときである.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)円$x^2+y^2=30$上の点$\mathrm{P}(5,\ \sqrt{5})$における接線の方程式は$[$1$]$である.
(2)$\displaystyle \frac{5x+3}{x^2+7x-18}=\frac{a}{x-2}+\frac{b}{x+9}$が$x$についての恒等式であるとき,$a=[$2$]$,$b=[$3$]$である.
(3)$\displaystyle \sin (\alpha+\beta)=\frac{3}{4},\ \sin (\alpha-\beta)=\frac{1}{4}$であるとき,$\sin \alpha \cos \beta$の値は$[$4$]$,$\cos \alpha \sin \beta$の値は$[$5$]$,$\sin^2 \alpha+\cos^2 \beta$の値は$[$6$]$である.
(4)$7$人が円形のテーブルに着席する方法は$[$7$]$通りある.
(5)さいころ$3$個を同時に投げるとき,そのうち同じ目が出るさいころが$2$個だけである確率は,$[$8$]$である.また,さいころ$4$個を同時に投げるとき,少なくとも$2$個のさいころが同じ目である確率は,$[$9$]$である.
(6)連立方程式
\[ \left\{ \begin{array}{l}
\sqrt{x}+2 \log_{10}y=3 \\
x-3 \log_{10}y^2=1 \phantom{e^{[ ]}}
\end{array} \right. \]
を満たす$x,\ y$の値は$x=[$10$]$,$y=[$11$]$である.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
スポンサーリンク

「連立方程式」とは・・・

 まだこのタグの説明は執筆されていません。