タグ「連立方程式」の検索結果

1ページ目:全35問中1問~10問を表示)
愛媛大学 国立 愛媛大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{1+\sqrt{5}}{2} \right)^3$からその整数部分を引いた値を$a$とするとき,$a^2+4a+5$の値を求めよ.
(2)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
\log_2x-\log_2y=1 \\
x \log_2 x-y \log_2 y=0
\end{array} \right. \]
(3)$s,\ t$を実数とする.座標空間内の同一平面上にある$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ s,\ t)$,$\mathrm{B}(2,\ 3,\ 2)$,$\mathrm{C}(0,\ 5,\ 1)$が$\angle \mathrm{AOB}={90}^\circ$をみたすとき,$s,\ t$の値を求めよ.
(4)初項が$3$,公比が$4$である等比数列の第$k$項を$a_k$とする.このとき,$\displaystyle \sum_{k=n}^{n^2}a_k$を求めよ.
昭和大学 私立 昭和大学 2015年 第1問
以下の各問いに答えよ.

(1)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
2x+2y+3z=2 \\
-3x-3y+z=-14 \phantom{\frac{[ ]}{2}} \\
x+3y+2z=2 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
(2)グラフが$x$軸と点$(2,\ 0)$および$(-3,\ 0)$で交わり,点$(6,\ 12)$を通るような$2$次関数を$y=ax^2+bx+c$とするとき,$a,\ b,\ c$をそれぞれ求めよ.
(3)正四角すい$\mathrm{O}$-$\mathrm{ABCD}$において,底面$\mathrm{ABCD}$の一辺の長さは$2a$,高さは$a$である.点$\mathrm{A}$から辺$\mathrm{OB}$に引いた垂線の長さを求めよ.
(4)循環小数の積$0.\dot{1} \dot{8} \times 0. \dot{0}1 \dot{1}$を$1$つの既約分数で表せ.
昭和大学 私立 昭和大学 2015年 第1問
以下の各問いに答えよ.

(1)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
2x+2y+3z=2 \\
-3x-3y+z=-14 \phantom{\frac{[ ]}{2}} \\
x+3y+2z=2 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
(2)グラフが$x$軸と点$(2,\ 0)$および$(-3,\ 0)$で交わり,点$(6,\ 12)$を通るような$2$次関数を$y=ax^2+bx+c$とするとき,$a,\ b,\ c$をそれぞれ求めよ.
(3)正四角すい$\mathrm{O}$-$\mathrm{ABCD}$において,底面$\mathrm{ABCD}$の一辺の長さは$2a$,高さは$a$である.点$\mathrm{A}$から辺$\mathrm{OB}$に引いた垂線の長さを求めよ.
(4)循環小数の積$0.\dot{1} \dot{8} \times 0. \dot{0}1 \dot{1}$を$1$つの既約分数で表せ.
奈良県立医科大学 公立 奈良県立医科大学 2015年 第11問
次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
15 \cdot 2^{2x}-2^{2y}=-64 \\
\log_2 (x+1)-\log_2 (y+3)=-1
\end{array} \right. \]
高知工科大学 公立 高知工科大学 2015年 第3問
実数$x,\ y$に関する連立方程式
\[ \left\{ \begin{array}{l}
x^3+3y=4 \\
3x+y^3=4
\end{array} \right. \cdots\cdots (*) \]
について,次の各問に答えよ.

(1)$(x,\ y)$が連立方程式$(*)$の解であるとき,$x^3+y^3+3x+3y$の値および$x^3-y^3-3x+3y$の値を求めよ.
(2)連立方程式$(*)$の解$(x,\ y)$で$x=y$となるものをすべて求めよ.
(3)連立方程式$(*)$の解$(x,\ y)$で$x \neq y$となるものに対して
\[ X=x+y,\quad Y=xy \]
とおく.このとき$X,\ Y$の値を求めよ.
(4)連立方程式$(*)$の解$(x,\ y)$は全部でいくつあるか.
福岡教育大学 国立 福岡教育大学 2014年 第1問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$,$0 \leqq y \leqq \pi$のとき,連立方程式
\[ 3 \sin x-\sin y=\sqrt{3},\quad 3 \cos x+\cos y=-1 \]
を解け.
(2)$a,\ b,\ c$を実数とする.$\displaystyle a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$であるとき,$a,\ b,\ c$のうち少なくとも$1$つは$1$に等しいことを示せ.
(3)$0,\ 1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ記入された$6$枚のカードが入っている箱から$1$枚ずつ$3$枚のカードを取り出し,左から並べて自然数$n$を作るとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.ただし,例えば$012$は$12$を表すものとする.

(i) $n$が$3$桁の自然数になるのは何通りか.
(ii) $3$桁の自然数$n$を作った後,箱の中に残っている$3$枚のカードを左から並べて$3$桁の自然数$m$を作るとき,$n+m=555$となる$n$は何通りか.
福岡教育大学 国立 福岡教育大学 2014年 第1問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$,$0 \leqq y \leqq \pi$のとき,連立方程式
\[ 3 \sin x-\sin y=\sqrt{3},\quad 3 \cos x+\cos y=-1 \]
を解け.
(2)$a,\ b,\ c$を実数とする.$\displaystyle a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$であるとき,$a,\ b,\ c$のうち少なくとも$1$つは$1$に等しいことを示せ.
(3)$0,\ 1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ記入された$6$枚のカードが入っている箱から$1$枚ずつ$3$枚のカードを取り出し,左から並べて自然数$n$を作るとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.ただし,例えば$012$は$12$を表すものとする.

(i) $n$が$3$桁の自然数になるのは何通りか.
(ii) $3$桁の自然数$n$を作った後,箱の中に残っている$3$枚のカードを左から並べて$3$桁の自然数$m$を作るとき,$n+m=555$となる$n$は何通りか.
福島大学 国立 福島大学 2014年 第2問
次の連立方程式を解きなさい.
\[ \left\{ \begin{array}{l}
4(\log_{10}x)^2+2 \log_{10}y=1 \\
x^2y=10 \phantom{\displaystyle \frac{\mkakko{}}{2}}
\end{array} \right. \]
福島大学 国立 福島大学 2014年 第2問
次の連立方程式を解きなさい.
\[ \left\{ \begin{array}{l}
4(\log_{10}x)^2+2 \log_{10}y=1 \\
x^2y=10 \phantom{\displaystyle \frac{\mkakko{}}{2}}
\end{array} \right. \]
日本女子大学 私立 日本女子大学 2014年 第1問
次の連立方程式を満たす実数$x,\ y,\ z$を求めよ.
\[ \left\{ \begin{array}{l}
\log_2 xyz=2 \\
\log_2 xy^2z^3=3 \\
\log_2 x^2y^3z=4
\end{array} \right. \]
スポンサーリンク

「連立方程式」とは・・・

 まだこのタグの説明は執筆されていません。