タグ「連立」の検索結果

1ページ目:全9問中1問~10問を表示)
横浜市立大学 公立 横浜市立大学 2014年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c$を相異なる実数とする.$x,\ y,\ z$に関する連立$3$元$1$次方程式
\[ \left\{ \begin{array}{l}
x-ay+a^2z=a^4 \\
x-by+b^2z=b^4 \\
x-cy+c^2z=c^4
\end{array} \right. \]
を解きたい.その解を基本対称式
\[ \begin{array}{l}
A=a+b+c \\
B=ab+bc+ca \\
C=abc
\end{array} \]
を用いて表せ.
(2)平面上に$3$点$\mathrm{A}(2,\ 3)$,$\mathrm{B}(1,\ 2)$,$\mathrm{C}(3,\ 1)$をとる.このとき,三角形$\mathrm{ABC}$の内心を求めよ.
(3)行列$A$を
\setstretch{2.5}
\[ A=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{2+\sqrt{2}}}{2} & -\displaystyle\frac{\sqrt{2-\sqrt{2}}}{2} \\
\displaystyle\frac{\sqrt{2-\sqrt{2}}}{2} & \displaystyle\frac{\sqrt{2+\sqrt{2}}}{2}
\end{array} \right) \]
\setstretch{1.4}
とおく.このとき,行列の和
\[ A+A^2+\cdots +A^7+A^8 \]
を,(簡潔な形で)求めよ.
静岡大学 国立 静岡大学 2013年 第4問
$n$を自然数とする.$\alpha$を実数とし,$A=\left( \begin{array}{cc}
\alpha+1 & 1 \\
-1 & \alpha-1
\end{array} \right)$とする.このとき,次の問いに答えよ.

(1)$(A-\alpha E)^2=O$であることを示せ.ただし,$E$は$2$次単位行列,$O$は$2$次零行列とする.
(2)$A^n$を求めよ.
(3)連立$1$次方程式$A^n \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$の解$x,\ y$をすべて求めよ.
九州工業大学 国立 九州工業大学 2013年 第2問
$a,\ b$を実数とし,行列$A$を$2$次の正方行列とする.$x,\ y$についての連立$1$次方程式を,行列を用いて
\[ A \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right) \cdots\cdots (*) \]
と表す.次に答えよ.

(1)$A=\left( \begin{array}{cc}
3 & 2 \\
6 & 4
\end{array} \right)$のとき,連立$1$次方程式$(*)$を解け.
(2)$c$を実数とし,$a \neq 0,\ b \neq 0$とする.また,$A=\left( \begin{array}{cc}
a & b \\
c & 1
\end{array} \right)$とする.

(i) $a \neq bc$とする.連立$1$次方程式$(*)$がただ$1$つの解をもつことを示せ.また,連立$1$次方程式$A^2 \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right)$もただ$1$つの解をもつことを示せ.
(ii) 連立$1$次方程式$(*)$が解をもたないための必要十分条件を$a,\ b,\ c$を用いて表せ.この条件が成り立つとき,連立$1$次方程式$A^2 \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right)$も解をもたないことを示せ.

(iii) 連立$1$次方程式$(*)$が解を無数にもつための必要十分条件を$a,\ b,\ c$を用いて表せ.この条件が成り立つとき,自然数$m$に対して,連立$1$次方程式
\[ (A+A^2+A^3+\cdots +A^{2m-1}) \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right) \]
も解を無数にもつことを示せ.
九州工業大学 国立 九州工業大学 2013年 第3問
行列$A=\left( \begin{array}{cc}
3 & 4 \\
1 & 6
\end{array} \right)$について,以下の問いに答えよ.

(1)連立$1$次方程式$\left\{ \begin{array}{l}
3x+4y=kx \\
x+6y=ky
\end{array} \right.$が$x=y=0$以外の解をもつような実数$k$の値を$2$つ求めよ.
(2)(1)で求めた$k$の値を$a,\ b \ (a<b)$とし,$B=\left( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \right)$とする.実数$s,\ t$に対し,行列$P=\left( \begin{array}{cc}
s & t \\
1 & 1
\end{array} \right)$が$AP=PB$を満たすとき,実数$s,\ t$の値を求めよ.
(3)(2)で定めた行列$B$について,$B^n$(ただし,$n$は自然数)を推測し,その推測が正しいことを数学的帰納法で証明せよ.
(4)$A^n$を求めよ.ただし,$n$は自然数とする.
宮城大学 公立 宮城大学 2013年 第3問
次の空欄$[ナ]$から$[ヘ]$にあてはまる数や式を書きなさい.

ゆがんだサイコロがあり,各々の目の出る確率は下記の確率分布表の通りである.

確率分布表 \quad
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
目 & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline
確率 & $\displaystyle\frac{1}{9}$ & $\displaystyle\frac{4}{45}$ & $p$ & $q$ & $\displaystyle\frac{1}{35}$ & $r$ \\ \hline
\end{tabular}

また,このサイコロを$6$回投げたとき,次のような$2$つのデータ$(ⅰ)$,$(ⅱ)$が残った.
データ$(ⅰ) \cdots 4$回目に投げたとき$2$度目の$3$の目になる確率が$\displaystyle \frac{4}{27}$であった.
データ$(ⅱ) \cdots$出る目の期待値が$\displaystyle \frac{1153}{315}$であった.
このとき,以下の問いに答えなさい.ただし,$\displaystyle \frac{1}{35}<\frac{4}{45}<\frac{1}{9}<q<r<p<\frac{2}{3}$とする.
まず,確率分布表から,$p+q+r=[ナ] \cdots\cdots ①$である.
次に,データ$(ⅰ)$は$3$の目が$3$回目までに既に$1$回だけ出ていることを示すから,
\[ [ニ]=\frac{4}{27} \]
となる.
これより,次の$2$次方程式が得られる.
\[ [ヌ]=0 \]
条件より,$\displaystyle p<\frac{2}{3}$だから,$p=[ネ]$である.すると$①$から,
\[ q+r=[ノ] \cdots\cdots② \]
となる.
データ$(ⅱ)$から,期待値の式を$p,\ q,\ r$を用いて表せば,
\[ [ハ]=\frac{1153}{315} \]
である.
ゆえに,$p=[ネ]$を適用して,
\[ 2q+3r=[ヒ] \cdots\cdots③ \]
となる.$②$と$③$を連立して,$q=[フ]$,$r=[ヘ]$を得る.
島根大学 国立 島根大学 2012年 第4問
$a,\ b$を定数とし,$a \neq 0$とする.連立1次方程式
\[ \left\{
\begin{array}{l}
2x+(a-1)y=b \\
ax+a^2y=1
\end{array}
\right. \cdots\cdots (*) \]
について,次の問いに答えよ.

(1)$(*)$が2組以上の解をもつような$a$と$b$の値を求めよ.
(2)$(*)$が$x=1,\ y=2$をただ1組の解としてもつような$a$と$b$の値を求めよ.
(3)$(*)$が$x=y$となる解をもつための$a$と$b$に関する必要十分条件を求めよ.
関西大学 私立 関西大学 2012年 第1問
$x$と$y$についての連立方程式
\[ \left\{ \begin{array}{l}
3^{x+2y}+2^{4x+2y-3}=\displaystyle \frac{97}{3} \\ \\
3^{x+2y+2}-4^{2x+y-2}=-13
\end{array} \right. \qquad \cdots\cdots(*) \]
を考える.次の問いに答えよ.

(1)$X=3^{x+2y},\ Y=2^{4x+2y}$とおいて,連立方程式$(*)$を$X,\ Y$についての連立$1$次方程式に書きかえて,それを解いて$X$と$Y$の値を求めよ.
(2)連立方程式$(*)$を解け.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第3問
次の問いに答えよ.

(1)連立$1$次方程式
\[ \left\{ \begin{array}{l}
5x-y=kx \\
6x-2y=ky
\end{array} \right. \]
が$(x,\ y)=(0,\ 0)$以外の解をもつような$k$を$k_1,\ k_2$(ただし$k_1<k_2$)とおくと,$k_1=[$7$]$,$k_2=[$8$]$である.
(2)$(1)$で求めた$k_1$に対して$(x,\ y)=(1,\ a)$,$k_2$に対して$(x,\ y)=(b,\ 1)$が各々上の連立$1$次方程式を満たすとき,行列$A$と$P$を
\[ A=\left( \begin{array}{cc}
5 & -1 \\
6 & -2
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & b \\
a & 1
\end{array} \right) \]
とおくと$P^{-1}AP=[$9$]$となる.これより自然数$n$に対して$A^n=[$10$]$である.
(3)自然数$n$に対して漸化式
\[ \left\{ \begin{array}{l}
a_{n+1}=5a_n-b_n \\
b_{n+1}=6a_n-2b_n
\end{array} \right. ,\quad a_1=1,\ b_1=2 \]
を満たす数列$\{a_n\},\ \{b_n\}$の一般項を求めると,$a_n=[$11$]$,$b_n=[$12$]$である.
帯広畜産大学 国立 帯広畜産大学 2011年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,$\{b_n\}$は初項$b$,公比$r$の等比数列である.数列$\{a_n\}$の一般項を$a_n$で表し,その初項から第$n$項までの和を$S_a$とする.また,数列$\{b_n\}$の一般項を$b_n$で表し,その初項から第$n$項までの和を$S_b$とする.次の各問に解答しなさい.

(1)$d=2a,\ a \neq 0$とする.

(i) $d$と$n$を用いて$a_n$を表しなさい.また,$a$と$n$を用いて$S_a$を表しなさい.
(ii) 不等式$6a_n<a_{n+1}+27d$および$2a_n>a_{n+1}$を満たすすべての$n$の値を求めなさい.

(2)$r=2b+1,\ b \neq 0$とする.

(i) $b$と$n$を用いて$b_n$を表しなさい.また,$r$と$n$を用いて$S_b$を表しなさい.
(ii) $\displaystyle \log_2 b_n > \log_2 b_{n+1}+\frac{1}{2}$であるとき,$r$の値の範囲を求めなさい.

(3)$A$と$B$はいずれも$2 \times 2$行列であり,それぞれ$A=\left( \begin{array}{cc}
d & 2d-1 \\
1 & d
\end{array} \right),\ B=A^2$と定義される.また,行列$B$の$(1,\ 1)$成分を$g$とし,行列$A$が与えられたときの$a$と$b$の関係は次の連立1次方程式を満たすものとする.
\[ A \left( \begin{array}{c}
a \\
b
\end{array} \right)=\left( \begin{array}{c}
-9 \\
1
\end{array} \right) \]

(i) $d$を用いて$g$を表しなさい.また,$g$が最小値をとるときの$d$の値を求めなさい.
(ii) $g$が最小値をとるとき,$A$の逆行列$A^{-1}$を求め,さらに$a$と$b$の値を求めなさい.また,$r \neq 1,\ r>0,\ n=3$および$S_a=2S_b$であるとき,$S_a$と$r$の値を求めなさい.
スポンサーリンク

「連立」とは・・・

 まだこのタグの説明は執筆されていません。