タグ「通過」の検索結果

3ページ目:全51問中21問~30問を表示)
東京大学 国立 東京大学 2014年 第3問
座標平面の原点を$\mathrm{O}$で表す.線分$y=\sqrt{3}x (0 \leqq x \leqq 2)$上の点$\mathrm{P}$と,線分$y=-\sqrt{3}x (-3 \leqq x \leqq 0)$上の点$\mathrm{Q}$が,線分$\mathrm{OP}$と線分$\mathrm{OQ}$の長さの和が$6$となるように動く.このとき,線分$\mathrm{PQ}$の通過する領域を$D$とする.

(1)$s$を$-3 \leqq s \leqq 2$をみたす実数とするとき,点$(s,\ t)$が$D$に入るような$t$の範囲を求めよ.
(2)$D$を図示せよ.
名古屋大学 国立 名古屋大学 2014年 第2問
実数$t$に対して$2$点$\mathrm{P}(t,\ t^2)$,$\mathrm{Q}(t+1,\ (t+1)^2)$を考える.$t$が$-1 \leqq t \leqq 0$の範囲を動くとき,線分$\mathrm{PQ}$が通過してできる図形を図示し,その面積を求めよ.
名古屋大学 国立 名古屋大学 2014年 第3問
実数$t$に対して$2$点$\mathrm{P}(t,\ t^2)$,$\mathrm{Q}(t+1,\ (t+1)^2)$を考える.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(2)$a$は定数とし,直線$x=a$と$\ell$の交点の$y$座標を$t$の関数と考えて$f(t)$とおく.$t$が$-1 \leqq t \leqq 0$の範囲を動くときの$f(t)$の最大値を$a$を用いて表せ.
(3)$t$が$-1 \leqq t \leqq 0$の範囲を動くとき,線分$\mathrm{PQ}$が通過してできる図形を図示し,その面積を求めよ.
神戸大学 国立 神戸大学 2014年 第5問
$a,\ b$を正の実数とし,$xy$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(a,\ b)$をとる.三角形$\mathrm{OAB}$を,原点$\mathrm{O}$を中心に$90^\circ$回転するとき,三角形$\mathrm{OAB}$が通過してできる図形を$D$とする.このとき,以下の問に答えよ.

(1)$D$を$xy$平面上に図示せよ.
(2)$D$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
(3)$a+b=1$のとき,$(2)$で求めた$V$の最小値と,そのときの$a$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2014年 第3問
$a$を正の定数とする.$\mathrm{AB}=a$,$\mathrm{AC}=2a$,$\displaystyle \angle \mathrm{BAC}=\frac{2}{3}\pi$である$\triangle \mathrm{ABC}$と,
\[ |2 \overrightarrow{\mathrm{AP}}-2 \overrightarrow{\mathrm{BP}}-\overrightarrow{\mathrm{CP}}|=a \]
を満たす動点$\mathrm{P}$がある.このとき,次の問いに答えよ.

(1)辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とするとき,$|\overrightarrow{\mathrm{AD}}|$を求めよ.
(2)$|\overrightarrow{\mathrm{AP}}|$の最大値を求めよ.
(3)線分$\mathrm{AP}$が通過してできる図形の面積$S$を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第4問
座標平面上の放物線$C:y=-x^2+2ax-a^2+a+1$を考える.$a$が実数の範囲を動くとき,以下の問いに答えよ.

(1)$C$と放物線$\displaystyle y=x^2+\frac{1}{2}$との$2$つの共有点を結んだ線分の中点(共有点が$1$つの場合にはその点自身とする)が描く軌跡の長さを求めよ.
(2)$\displaystyle y \geqq x^2+\frac{1}{2}$の表す領域のうちで$C$が通過する部分の面積を求めよ.
茨城大学 国立 茨城大学 2014年 第4問
$0$でない実数$t$に対して,座標空間における$3$点$\mathrm{P}(t,\ 0,\ 0)$,$\displaystyle \mathrm{Q} \left( t,\ \frac{1}{1+t^2},\ 0 \right)$,$\displaystyle \mathrm{R} \left( t,\ 0,\ \frac{t}{1+t^2} \right)$を考える.以下の各問に答えよ.

(1)三角形$\mathrm{PQR}$の面積を$S(t)$とする.実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
(2)実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,三角形$\mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第2問
$r$を$0<r<2$をみたす実数とする.座標平面上の$4$点$\mathrm{A}(2-r,\ 2-r)$,$\mathrm{B}(-2+r,\ 2-r)$,$\mathrm{C}(-2+r,\ -2+r)$,$\mathrm{D}(2-r,\ -2+r)$を頂点とする正方形を考える.この正方形$\mathrm{ABCD}$の周上を動く点を$\mathrm{P}$とし,$\mathrm{P}$を中心とする半径$r$の円を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{AB}$上を$\mathrm{A}$から$\mathrm{B}$まで動くとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積を求めよ.
(2)点$\mathrm{P}$が正方形$\mathrm{ABCD}$の周上を一周するとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積$S$を求めよ.
(3)$(2)$で求めた$S$を最大にする$r$の値を求めよ.
龍谷大学 私立 龍谷大学 2014年 第2問
座標平面上の定点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(2,\ 2)$,$\mathrm{D}(3,\ 3)$と動点$\mathrm{P}$を考える.$\mathrm{P}$は原点$\mathrm{O}(0,\ 0)$から出発する.表の出る確率が$\displaystyle \frac{1}{3}$,裏の出る確率が$\displaystyle \frac{2}{3}$のコインを投げ,そのたびに,表が出れば$x$軸の正方向に$1$,裏が出れば$y$軸の正方向に$1$だけ進む.コインを$6$回投げるとき,次の問いに答えなさい.

(1)$\mathrm{P}$が$\mathrm{D}$に達する確率を求めなさい.
(2)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$の両方を通過して$\mathrm{D}$に達する確率を求めなさい.
(3)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の少なくとも$1$つを通過して$\mathrm{D}$に達する確率を求めなさい.
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
スポンサーリンク

「通過」とは・・・

 まだこのタグの説明は執筆されていません。