タグ「通り」の検索結果

1ページ目:全395問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
千葉大学 国立 千葉大学 2016年 第5問
$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$を直径とする円周から$\mathrm{O}$を除いた部分を点$\mathrm{Q}$が動く.点$\mathrm{A}$を通り$x$軸に平行な直線と直線$\mathrm{OQ}$の交点を$\mathrm{R}$とする.点$\mathrm{Q}$を通り$x$軸と平行な直線と,点$\mathrm{R}$を通り$y$軸と平行な直線との交点を$\mathrm{P}$とする.点$\mathrm{P}$の軌跡を$C$とする.

(1)$C$の方程式を求めよ.
(2)正の実数$a$に対して,$C$と$x$軸と$2$直線$x=a$,$x=-a$によって囲まれる図形を,$x$軸の周りに$1$回転してできる立体の体積を$V(a)$とする.このとき,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
徳島大学 国立 徳島大学 2016年 第1問
座標平面上の曲線$\displaystyle \frac{x^2}{4}+y^2=1 (y \geqq 0)$を$C$とする.実数$t>1$に対して,点$(0,\ t)$を通り第$1$象限の点$(a,\ b)$で曲線$C$に接する直線を$\ell$とする.

(1)$x$軸,$y$軸と$\ell$で囲まれた部分の面積を$S_1(t)$とする.$t$が$t>1$の範囲を動くとき,$S_1(t)$の最小値を求めよ.
(2)曲線$C$と直線$y=b$で囲まれた部分の面積を$S_2(t)$とする.$t$が$t>1$の範囲を動くとき,導関数$S_2^\prime(t)$の最大値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第1問
空間内の平面$\alpha$上に平行四辺形$\mathrm{OABC}$があり,
\[ \mathrm{OA}=2,\quad \mathrm{OC}=3,\quad \angle \mathrm{AOC}=\frac{\pi}{3} \]
とする.点$\mathrm{C}$を通り$\alpha$に垂直な直線上に点$\mathrm{D}$があり,
\[ \mathrm{CD}=1 \]
とする.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{D}$を通る平面を$\beta$とし,$\mathrm{C}$を通り$\beta$に垂直な直線と$\beta$との交点を$\mathrm{H}$とする.

(1)$\triangle \mathrm{OBD}$の面積を求めよ.
(2)線分$\mathrm{CH}$の長さを求めよ.
弘前大学 国立 弘前大学 2016年 第3問
半円$C_1:x^2+y^2=3,\ y>0$と放物線$C_2:y=ax^2$を考える.点$(2,\ 0)$を通り,$C_1$と接する直線を$\ell$とし,$C_1$と$\ell$の接点を$\mathrm{T}$とする.

(1)$\ell$の方程式を求めよ.
(2)$C_2$が点$\mathrm{T}$を通るときの$a$の値を求めよ.
(3)$(2)$で求めた$a$に対して,$C_2$と$\ell$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$で囲まれた部分の面積を$S_2$とする.$S_1-S_2$を求めよ.
スポンサーリンク

「通り」とは・・・

 まだこのタグの説明は執筆されていません。