タグ「途中」の検索結果

1ページ目:全12問中1問~10問を表示)
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
天使大学 私立 天使大学 2016年 第4問
図のような道路のある町を考える.各区画は正方形で,ある交差点から別の交差点への移動は必ず最短距離を進むこととする.また交差点で$2$通りの進み方がある場合,選び方の確率はそれぞれ$\displaystyle \frac{1}{2}$であるとする.$\mathrm{P}$,$\mathrm{Q}$の$2$人が,それぞれ$\mathrm{A}$地点,$\mathrm{B}$地点を同時に出発し,それぞれ$\mathrm{B}$地点,$\mathrm{A}$地点へと同じ速さで向かう.次の問いに答えなさい.
(図は省略)

(1)$\mathrm{A}$地点から$\mathrm{B}$地点まで行く道順は$\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}$通りある.
(2)$\mathrm{A}$地点から$\mathrm{B}$地点まで行く道順で,$\mathrm{C}$地点を通る道順は$\mkakko{$\mathrm{c}$} \mkakko{$\mathrm{d}$}$通りある.

また$\mathrm{A}$地点から$\mathrm{B}$地点まで行く道順で,$\mathrm{C}$地点を通る確率は$\displaystyle \frac{\mkakko{$\mathrm{e}$}}{\mkakko{$\mathrm{f}$}}$である.
(3)$\mathrm{P}$と$\mathrm{Q}$が$\mathrm{C}$地点で出会う確率は$\displaystyle \frac{\mkakko{$\mathrm{g}$}}{\mkakko{$\mathrm{h}$} \mkakko{$\mathrm{i}$}}$である.
(4)$\mathrm{P}$と$\mathrm{Q}$が$\mathrm{C}$地点を含め途中で出会う確率は$\displaystyle \frac{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}}{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$} \mkakko{$\mathrm{n}$}}$である.
静岡大学 国立 静岡大学 2015年 第2問
$1$つのコマと下の図のような$3$つのマス目$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.コマが$\mathrm{A}$または$\mathrm{B}$にあるとき,さいころを投げて出た目の数だけ$\mathrm{C}$の方向にコマを進める.ただし,コマが途中で$\mathrm{C}$や$\mathrm{A}$に来たら,逆の方向に折り返して進める.これを$1$回の操作とする.$\mathrm{A}$または$\mathrm{B}$で止まった場合はその止まったマス目から操作を繰り返し,$\mathrm{C}$に止まった場合は操作を終了する.例えば,$\mathrm{A}$にコマがあり$3$の目が出たら$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{B}$とコマを進め,続けて操作を繰り返したとき$5$の目が出たら$\mathrm{B} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A} \to \mathrm{B} \to \mathrm{C}$と進めて操作を終了する.

最初にコマを$\mathrm{A}$に置いて操作を始めるとき,次の問いに答えよ.


\begin{tabular}{|p{10mm}|p{10mm}|p{10mm}|}
\hline
$\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ \\ \hline
\end{tabular}


(1)$1$回の操作で終了する確率$p_1$を求めよ.
(2)$2$回の操作で終了する確率$p_2$を求めよ.
(3)$n$回の操作で終了する確率$p_n$を$n$を用いて表せ.
静岡大学 国立 静岡大学 2015年 第4問
$1$つのコマと下の図のような$3$つのマス目$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.コマが$\mathrm{A}$または$\mathrm{B}$にあるとき,さいころを投げて出た目の数だけ$\mathrm{C}$の方向にコマを進める.ただし,コマが途中で$\mathrm{C}$や$\mathrm{A}$に来たら,逆の方向に折り返して進める.これを$1$回の操作とする.$\mathrm{A}$または$\mathrm{B}$で止まった場合はその止まったマス目から操作を繰り返し,$\mathrm{C}$に止まった場合は操作を終了する.例えば,$\mathrm{A}$にコマがあり$3$の目が出たら$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{B}$とコマを進め,続けて操作を繰り返したとき$5$の目が出たら$\mathrm{B} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A} \to \mathrm{B} \to \mathrm{C}$と進めて操作を終了する.

最初にコマを$\mathrm{A}$に置いて操作を始めるとき,次の問いに答えよ.


\begin{tabular}{|p{10mm}|p{10mm}|p{10mm}|}
\hline
$\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ \\ \hline
\end{tabular}


(1)$1$回の操作で終了する確率$p_1$を求めよ.
(2)$2$回の操作で終了する確率$p_2$を求めよ.
(3)$n$回の操作で終了する確率$p_n$を$n$を用いて表せ.
中央大学 私立 中央大学 2015年 第4問
表が出る確率が$\displaystyle q \ \left( q<\frac{1}{2} \right)$,裏が出る確率が$1-q$であるコインを使い,$xy$平面上の動点$P$を次の規則で動かす.
\begin{itemize}
動点$P$は原点から出発する.
コインを投げて表が出ると,$x$軸の正の方向に$1$移動する.
コインを投げて裏が出ると,$y$軸の正の方向に$1$移動する.
\end{itemize}
このコインを$4$回投げたとき,動点$P$が点$\mathrm{A}(2,\ 2)$に到着する確率は$\displaystyle \frac{8}{27}$である.このとき,以下の設問に答えよ.なお,解答の数値は分数および累乗のままでよい.

(1)このコインを$1$回投げたとき,表が出る確率$q$を求めよ.
(2)このコインを$8$回投げたとき,
動点$P$が,途中で点$\mathrm{A}(2,\ 2)$を通らずに,点$\mathrm{B}(4,\ 4)$に到着する確率
を求めよ.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)$\displaystyle 0<\theta<\frac{\pi}{2}$とし,$\displaystyle \sin \theta=\frac{1}{4}$であるとする.$\cos 2\theta,\ \cos 3\theta$の値を求めよ.
(2)$x$軸に接し,点$(3,\ 4)$を通る円の中心が描く軌跡の方程式を求めよ.
(3)硬貨を$3$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数より多いのは,$1$回目表,$2$回目表,$3$回目表となる場合と,$1$回目表,$2$回目表,$3$回目裏となる場合の$2$通りである.硬貨を$5$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数よりも多く,最終的に表が$3$回出る確率を求めよ.
福井大学 国立 福井大学 2013年 第1問
$2$つのさいころを同時に投げることをくり返し,投げるのを止めた時点までの出た目の総和が得点となるゲームを行う.さいころは何回投げてもよいし,途中で投げるのを止めてもよいが,$2$つのさいころで同じ目が出た場合は得点は$0$点となり,以降さいころを投げることもできなくなる.例えば,下の得点表において,$\mathrm{A}$君は$2$回で投げるのを止めて$18$点,$\mathrm{B}$君は$3$回目で「$6$と$6$」を出してしまったので$0$点となる.$\mathrm{C}$君は$1$回さいころを投げたところである.以下の問いに答えよ.

\begin{tabular}{|c||c|c|c|}
\hline
& $\mathrm{A}$君 & $\mathrm{B}$君 & $\mathrm{C}$君 \\ \hline
$1$回目 & $3$と$6$ & $1$と$3$ & $5$と$6$ \\
$2$回目 & $4$と$5$ & $4$と$6$ & \\
$3$回目 & 止 & $6$と$6$ & \\ \hline
得点 & $18$ & $0$ & \\ \hline
\end{tabular}


(1)$2$つのさいころを$1$回だけ投げてゲームを止めたときの,得点の期待値を求めよ.
(2)$\mathrm{C}$君がもう$1$回さいころを投げてゲームを止めたときの,得点の期待値を求めよ.
(3)これまでに出した目の合計が$x$である人がいる.この人がもう$1$回さいころを投げてゲームを止めたときの得点の期待値$y$を,$x$を用いて表せ.
(4)(3)で求めた$y$について,$y<x$となる$x$の範囲を求めよ.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア],\ [イ]$に「真」または「偽」のいずれかを記入せよ.また空欄$[ウ]$~$[シ]$に当てはまる数または式を記入せよ.

(1)ある自然数$n$について,命題「$n$が偶数ならば$n^2$は偶数である」の逆は$[ア]$,対偶は$[イ]$である.
(2)$3$次方程式$x^3+2x^2-8x-21=0$の解は$x=[ウ],\ [エ],\ [オ]$である.
(3)${(2x+\cos \theta)}^3$を展開したときの$x^2$の係数が$-6$のとき,$\theta=[カ]$である.ただし,$0 \leqq \theta<\pi$とする.
(4)$2$次方程式$x^2-2(k+1)x+2k^2=0$が実数解をもつような実数$k$の値の範囲は$[キ]$である.
(5)不等式$-1+2 \log_2 (x+1)>\log_{\frac{1}{2}}(2-x)$を満たす$x$の値の範囲は$[ク]$である.
(6)$\mathrm{A}$君が徒歩と自転車で移動した.スタート地点から途中まで分速$80 \, \mathrm{m}$で$30$分歩き,その後自転車に乗って$10$分進んでゴールに着いたところ,平均の速さは分速$130 \, \mathrm{m}$であった.このときの自転車の速さは分速$[ケ] \, \mathrm{m}$である.
(7)$2$つのベクトル$\overrightarrow{a}=(1,\ -2,\ 1)$と$\overrightarrow{b}=(x,\ y,\ -1)$の大きさが等しく,なす角が${60}^\circ$のとき,$x$の値は$[コ]$,$[サ]$である.
(8)数列$1,\ 11,\ 111,\ 1111,\ 11111,\ \cdots$の第$n$項を$n$の式で表すと,$[シ]$となる.
神戸大学 国立 神戸大学 2011年 第3問
袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っている.4つの数$0,\ 3,\ 6,\ 9$をマジックナンバーと呼ぶことにする.次のようなルールをもつ,1人で行うゲームを考える.\\
\quad ルール:袋から無作為に 1 枚ずつカードを取り出していく.ただし,一度取
り出したカードは袋に戻さないものとする.取り出したカードの数字の合計がマ
ジックナンバーになったとき,その時点で負けとし,それ以降はカードを取り出
さない.途中で負けとなることなく,すべてのカードを取り出せたとき,勝ちと
する.以下の問に答えよ.

(1)2枚のカードを取り出したところで負けとなる確率を求めよ.
(2)3枚のカードを取り出したところで負けとなる確率を求めよ.
(3)このゲームで勝つ確率を求めよ.
スポンサーリンク

「途中」とは・・・

 まだこのタグの説明は執筆されていません。