タグ「逆関数」の検索結果

2ページ目:全26問中11問~20問を表示)
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$x \geqq 0$で定義される関数$f(x)=xe^{\frac{x}{2}}$について次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の第$1$次導関数を$f^\prime(x)$,第$2$次導関数を$f^{\prime\prime}(x)$とする.$f^\prime(2)$,$f^{\prime\prime}(2)$を求めよ.
(2)$f(x)$の逆関数を$g(x)$,$g(x)$の第$1$次導関数を$g^\prime(x)$,第$2$次導関数を$g^{\prime\prime}(x)$とする.$g^\prime(2e)$,$g^{\prime\prime}(2e)$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第7問
$-2 \leqq x \leqq 2$上で関数$f(x),\ g(x)$を
\[ f(x)=\frac{1}{2}-\frac{1}{4}|x|,\quad g(x)=\int_{-2}^x f(t) \, dt \]
によって定める.

(1)$y=f(x)$のグラフの概形を描け.
(2)$g(x)$を計算し,$y=g(x)$のグラフの概形を描け.
(3)$y=g(x)$の逆関数$y=g^{-1}(x)$を求め,そのグラフの概形を描け.
(4)$\displaystyle \int_0^1 (g^{-1}(x))^2 \, dx$を計算せよ.
(5)$y=g^{-1}(x)$は$\displaystyle x=\frac{1}{2}$で微分可能であることを示せ.
山形大学 国立 山形大学 2013年 第3問
関数$\displaystyle f(x)=\frac{1}{2}x^2 \ (x \geqq 0)$の逆関数を$f^{-1}(x)$とする.$xy$平面上に$2$曲線$C_1:y=f(x)$と$C_2:y=f^{-1}(x)$がある.次の問いに答えよ.

(1)$2$曲線$C_1,\ C_2$で囲まれた図形の面積を求めよ.
(2)$a \geqq 2$とする.曲線$C_1$上の点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{2} \right)$における接線を$\ell_1$,曲線$C_2$上の点$\displaystyle \mathrm{B} \left( \frac{a^2}{2},\ a \right)$における接線を$\ell_2$とし,$2$直線$\ell_1,\ \ell_2$のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.

(i) $\tan \theta$を$a$の式で表せ.
(ii) $\displaystyle \lim_{a \to \infty} \sin^2 \theta$を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第1問
関数$\displaystyle f(x)=\frac{1}{4}(x-1)^2+\frac{3}{2} (1 \leqq x \leqq 3)$を考える.

(1)関数$f(x)$の逆関数$f^{-1}(x)$は
\[ f^{-1}(x)=[ア]+\sqrt{[イ]x-[ウ]} \quad \left( \frac{[エ]}{[オ]} \leqq x \leqq \frac{[カ]}{[キ]} \right) \]
である.
(2)不等式$x<f^{-1}(x)$を満たす$x$の値の範囲は
\[ [ク]-\sqrt{[ケ]}<x \leqq \frac{[コ]}{[サ]} \]
である.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第3問
関数$f(x)=x^3-x^2+x$について,以下の各問いに答えよ.

(1)$f(x)$はつねに増加する関数であることを示せ.
(2)$f(x)$の逆関数を$g(x)$とおく.$x>0$について
\[ \sqrt[3]{x}-1 < g(x) < \sqrt[3]{x}+1 \]
が成立することを示せ.
(3)$b>a>0$について
\[ 0<\int_a^b \frac{1}{x^2+1}\, dx<\frac{1}{a} \]
が成立することを示せ.
(4)自然数$n$について,(2)で定義された$g(x)$を用いて
\[ A_n=\int_n^{2n} \frac{1}{\{g(x)\}^3+g(x)} \, dx \]
とおくとき,極限値$\displaystyle \lim_{n \to \infty} A_n$を求めよ.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
岩手大学 国立 岩手大学 2011年 第4問
2つの関数を$f(x)=\sqrt{x+1} \ (x \geqq -1),\ g(x)=x^2-1 \ (x \geqq 0)$とし,$y=f(x)$と$y=g(x)$で表される曲線をそれぞれ$C_1,\ C_2$とする.このとき,次の問いに答えよ.

(1)$f(x)$の逆関数が$g(x)$であることを示せ.
(2)曲線$C_1$と曲線$C_2$の交点Pの座標を求めよ.
(3)2つの曲線$C_1,\ C_2$,および2直線$x=0,\ x=1$で囲まれた図形の面積が,(2)で求めた交点Pを通る直線により二等分されるとき,この直線の傾きを求めよ.
スポンサーリンク

「逆関数」とは・・・

 まだこのタグの説明は執筆されていません。