タグ「軌跡」の検索結果

9ページ目:全221問中81問~90問を表示)
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$37$]$にあてはまる数字を入れよ.

$xy$平面上に,双曲線$x^2-y^2=1$がある.この双曲線と直線$y=ax+3$が点$\mathrm{P}$で接している.ただし$a>0$とする.このとき,

(1)$a=\sqrt{[$19$][$20$]}$

$\mathrm{P}$の座標は$\displaystyle \left( -\frac{\sqrt{[$21$][$22$]}}{[$23$]},\ -\frac{[$24$]}{[$25$]} \right)$である.

(2)この双曲線上に点$\mathrm{Q}(s,\ t)$がある.線分$\mathrm{PQ}$の中点を$\mathrm{M}$とすると,$\mathrm{M}$の座標は
\[ \left( \frac{s}{2}-\frac{\sqrt{[$26$][$27$]}}{[$28$]},\ \frac{t}{2}-\frac{[$29$]}{[$30$]} \right) \]
と表すことができる.また,$\mathrm{M}$の軌跡は双曲線$\displaystyle x^2-y^2=\frac{[$31$]}{[$32$]}$を

$x$軸方向に$\displaystyle -\frac{\sqrt{[$33$][$34$]}}{[$35$]}$,$y$軸方向に$\displaystyle -\frac{[$36$]}{[$37$]}$だけ平行移動して得られる双曲線である.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)$\displaystyle 0<\theta<\frac{\pi}{2}$とし,$\displaystyle \sin \theta=\frac{1}{4}$であるとする.$\cos 2\theta,\ \cos 3\theta$の値を求めよ.
(2)$x$軸に接し,点$(3,\ 4)$を通る円の中心が描く軌跡の方程式を求めよ.
(3)硬貨を$3$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数より多いのは,$1$回目表,$2$回目表,$3$回目表となる場合と,$1$回目表,$2$回目表,$3$回目裏となる場合の$2$通りである.硬貨を$5$回投げるとき,途中においてそれまでに表の出た回数がつねに裏の出た回数よりも多く,最終的に表が$3$回出る確率を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第2問
座標空間内に$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(3,\ 5,\ 7)$,$\mathrm{C}(4,\ 4,\ 5)$がある.また,$s,\ t$は実数であるとして,点$\mathrm{P}(s,\ t,\ 4)$を考える.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあるための$s,\ t$の関係式を求めよ.
(2)点$\mathrm{P}$が直線$\mathrm{AB}$上にあるときの$s,\ t$の値を求めよ.
(3)点$\mathrm{P}$が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上を動くとき,その軌跡により三角形$\mathrm{ABC}$は二つの部分に分けられる.この二つの部分の面積の比の値$r$を求めよ.ただし,$r \geqq 1$とする.
兵庫県立大学 公立 兵庫県立大学 2014年 第5問
$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を空間のベクトルとし,$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=|\overrightarrow{c}|=1$,$\overrightarrow{a} \cdot \overrightarrow{b}=0$,$\overrightarrow{a} \cdot \overrightarrow{c}=0$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=-\frac{1}{2}$とする.$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}+\overrightarrow{c}$とおく.次の問いに答えよ.

(1)点$\mathrm{O}$を通り,ベクトル$\overrightarrow{a}$,$\overrightarrow{c}$に平行な平面$\alpha$がある.点$\mathrm{P}$から平面$\alpha$に垂線を下ろし,その足を$\mathrm{H}$とする.ベクトル$\overrightarrow{\mathrm{OH}}$を$x$,$y$,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$のうち,必要なものを用いて表せ.
(2)$|\overrightarrow{\mathrm{OP}}|=\sqrt{3}$となるように点$\mathrm{P}$が動くとする.このとき,$x,\ y$から定まる点$\mathrm{Q}(x,\ y)$の軌跡を求め,その概形をかけ.
愛知県立大学 公立 愛知県立大学 2014年 第4問
座標平面上に点$\mathrm{P}(x,\ y)$,点$\mathrm{F}(1,\ 0)$,点$\mathrm{F}^\prime(-1,\ 0)$,および直線$\ell:x=2$がある.点$\mathrm{P}$から直線$\ell$に下ろした垂線を$\mathrm{PH}$とする.また,点$\mathrm{P}$と点$\mathrm{F}$,$\mathrm{F}^\prime$,$\mathrm{H}$との距離を,それぞれ$\mathrm{PF}$,$\mathrm{PF}^\prime$,$\mathrm{PH}$とし,原点$\mathrm{O}$と点$\mathrm{P}$の距離を$r$とする.比$\displaystyle \frac{\mathrm{PF}}{\mathrm{PH}}$の値が$\displaystyle \frac{1}{\sqrt{2}}$となる点$\mathrm{P}$の軌跡を$C$とするとき,以下の問いに答えよ.

(1)$C$の方程式を求めよ.
(2)$\mathrm{PF}+\mathrm{PF}^\prime$は定数となる.その値を求めよ.
(3)$\mathrm{PF} \cdot \mathrm{PF}^\prime$を$r$を用いて表せ.
(4)点$\mathrm{P}$は第$1$象限にあり,$\displaystyle \angle \mathrm{F}^\prime \mathrm{PF}=\frac{\pi}{3}$とする.このとき,$r$の値と点$\mathrm{P}$の座標を求めよ.また,$C$上の求めた点$\mathrm{P}$における接線の方程式を求めよ.
会津大学 公立 会津大学 2014年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int \frac{dx}{x(\log x)^2}=[イ]$

(ii) $\displaystyle \int_{6\pi}^{7\pi} x \sin x \, dx=[ロ]$

(iii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos 2x \cos x \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} (\sqrt{n(n+3)}-n)=[ニ] \]
(3)$3^x=5^y=15^{6}$をみたす実数$x,\ y$について,$\displaystyle \frac{1}{x}+\frac{1}{y}=[ホ]$である.
(4)$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(2,\ 0)$からの距離の比が$1:2$である点$\mathrm{P}(x,\ y)$の軌跡を表す曲線の方程式は$[ヘ]$である.
(5)$2$つのベクトル$\overrightarrow{a}=(2,\ 3,\ 2)$,$\overrightarrow{b}=(1,\ 0,\ -2)$の両方に垂直で,大きさが$1$であるベクトルは$[ト]$と$[チ]$である.
岡山大学 国立 岡山大学 2013年 第4問
$xy$平面において,点$(1,\ 2)$を通る傾き$t$の直線を$\ell$とする.また,$\ell$に垂直で原点を通る直線と$\ell$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$の軌跡が$2$次曲線$2x^2-ay=0$と$3$点のみを共有するような$a$の値を求めよ.また,そのとき$3$つの共有点の座標を求めよ.ただし$a \neq 0$とする.
広島大学 国立 広島大学 2013年 第3問
座標平面上の$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(t,\ 0)$を考える.ただし,$t \geqq 0$とする.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1$辺とする正三角形は$2$つある.それぞれの正三角形について,$2$点$\mathrm{A}$,$\mathrm{B}$以外の頂点の座標を$t$を用いて表せ.
(2)$(1)$で求めた$2$点のうち$x$座標が小さい方を$\mathrm{C}$とする.$t$を動かすとき,点$\mathrm{C}$の軌跡を図示せよ.
(3)$k$を定数とする.点$\mathrm{B}$と直線$y=kx$上の点$\mathrm{P}$をそれぞれうまく選ぶことで$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を頂点とする正三角形ができるとき,$k$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が$2$である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)$a$を正の数とする.円$x^2+y^2=a$と$C$の交点の個数が,$a$の値によってどのように変わるかを調べよ.
横浜国立大学 国立 横浜国立大学 2013年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$に対し,$xy$平面の第1象限の点$\mathrm{P}$および$x$軸の正の部分にある点$\mathrm{Q}$を
\[ \angle \mathrm{QOP}=\theta,\quad \angle \mathrm{PQO}=2\theta,\quad \mathrm{PQ}=1 \]
を満たすようにとる.$\mathrm{PQ}$の中点を$\mathrm{R}$とする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,$\mathrm{P}$の軌跡を$C_1$,$\mathrm{R}$の軌跡を$C_2$とする.次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(2)$C_1,\ C_2$を求め,それらを図示せよ.
(3)$C_1,\ C_2$および$x$軸で囲まれる部分を$x$軸のまわりに1回転してできる回転体の体積を求めよ.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。