タグ「軌跡」の検索結果

8ページ目:全221問中71問~80問を表示)
鳥取大学 国立 鳥取大学 2014年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数$\theta$に対して,関係式
\[ \frac{x^2}{(\cos \theta+2)^2}+\frac{y^2}{(\sin \theta+3)^2}=1 \]
を満たす第$1$象限内の点で,積$xy$の値を最大にする点を$\mathrm{P}(\theta)$とする.

(1)$\mathrm{P}(0)$の座標を求めよ.
(2)$\displaystyle \mathrm{P}(\theta) \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$の軌跡の方程式を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
自治医科大学 私立 自治医科大学 2014年 第25問
点$\displaystyle \mathrm{P}(\cos^4 \theta,\ -\sin^4 \theta) (0 \leqq \theta \leqq \frac{\pi}{2})$の軌跡を曲線$C$とし,$\displaystyle \theta=\frac{\pi}{6}$における曲線$C$の接線を直線$L$とする.曲線$C$,直線$L$,$y$軸で囲まれた面積を$S$とする.$128S$の値を求めよ.
大阪薬科大学 私立 大阪薬科大学 2014年 第2問
次の問いに答えなさい.

$t$を実数とする.座標平面上の$2$次関数$y=f(x)$のグラフ$C$は,軸が$y$軸,頂点が原点$\mathrm{O}$の放物線であり,点$(-2,\ 1)$を通る.$C$上の点$\mathrm{P}(t,\ f(t))$における接線を$\ell$とし,点$\mathrm{Q}(-1,\ 0)$を通り,$\ell$と垂直な直線を$m$とする.

(1)$f(1)$の値は$[$\mathrm{E]$}$である.
(2)$\ell$の方程式を$t$を用いて表すと,$y=[$\mathrm{F]$}$である.
(3)$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,線分$\mathrm{PQ}$を$1:2$に外分する点$\mathrm{G}$の軌跡を求め,またそれを図示しなさい.
(4)$m$が$C$の接線となるとき,$t=[$\mathrm{G]$}$である.このとき,$C$と$\ell$および$m$で囲まれる部分の面積は$[$\mathrm{H]$}$である.
早稲田大学 私立 早稲田大学 2014年 第2問
$x$-$y$平面の双曲線$\displaystyle y=\frac{1}{x}$上の相異なる$3$点を,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,その$x$座標を,それぞれ,$a,\ b,\ c$とする.このとき,次の各問に答えよ.

(1)空欄にあてはまる数式を求め,答のみ解答欄に記入せよ.

直線$\mathrm{AB}$に垂直な直線の傾きは$[ア]$である.$\triangle \mathrm{ABC}$の垂心を$\mathrm{H}$とするとき,$\mathrm{H}$の$x,\ y$座標を$a,\ b,\ c$を用いて表すと,$x=[イ]$,$y=[ウ]$である.よって,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が双曲線上を動くとき,$\mathrm{H}$の軌跡は$x,\ y$の関係式$[エ]$で表され,$\mathrm{H}$はこの関係式で表される図形上のすべての点を動く.

(2)$\triangle \mathrm{ABC}$の外心を$\mathrm{P}(x,\ y)$とする.

(i) $\mathrm{P}$の座標$x,\ y$を$a,\ b,\ c$を用いて表せ.
(ii) $a,\ b,\ c$が,$a+b=0$,$c=1$を満たすとき,$\mathrm{P}(x,\ y)$の軌跡を求め,その軌跡を解答欄の$x$-$y$平面に図示せよ.
同志社大学 私立 同志社大学 2014年 第2問
$p,\ q$を実数とする$t$に関する$2$次方程式$t^2+pt+q=0$の解が虚数になるとき,次の問いに答えよ.

(1)解の$1$つを$\alpha$とするとき,$\alpha (2-\alpha)$が実数でありかつ$\alpha (2-\alpha)<2$となるための$p,\ q$の条件を求めよ.
(2)虚部が負の解を$\beta$とする.$(1)$の条件のもとで$\beta (1-\beta)$の実部を$y$,虚部を$x$として,座標平面上の点$\mathrm{P}(x,\ y)$の軌跡を求めよ.
(3)$(2)$で求めた軌跡上の点$\mathrm{P}(x,\ y)$と定点$\mathrm{Q}(0,\ 1)$との距離が最小となるときの点$\mathrm{P}$の座標と距離$\mathrm{PQ}$を求めよ.
桜美林大学 私立 桜美林大学 2014年 第3問
$a$を実数の定数とする.$C:x^2+y^2+2ax-4ay+6a^2-1=0$について,以下の問に答えなさい.

(1)$C$が円を表すとき,$a$の取りうる値の範囲は,$[ノ]<a<[ハ]$である.
(2)$C$が半径最大の円となるとき,その中心の座標は,$([ヒ],\ [フ])$である.
(3)$C$が円を表すとき,その中心の軌跡は,
直線$y=[ヘ]x$の$[ホ]<x<[マ]$の部分である.
東京女子大学 私立 東京女子大学 2014年 第6問
座標平面上の点$\mathrm{P}(a,\ b)$が条件$2a^2+b=1$をみたしながら動くとき,点$\mathrm{Q}(-4a-b,\ -a)$の描く軌跡を座標平面内に図示せよ.
北里大学 私立 北里大学 2014年 第1問
次の文中の$[ア]$~$[ヒ]$にあてはまる最も適切な数を答えなさい.

(1)複素数$z=-1+i$を考える.ここで,$i$は虚数単位である.このとき,
\[ z+z^2+z^3+z^4=[ア]+[イ]i \]
である.また,
\[ \sum_{n=1}^{12} z^n=[ウ][エ]+[オ][カ] i \]
となる.
(2)$0 \leqq \theta \leqq \pi$の範囲における関数$\displaystyle f(\theta)=\frac{1}{3} \sin \theta+\frac{1}{2} \cos^2 \theta-\frac{2}{3}$の最小値は$\displaystyle \frac{[キ]}{[ク]}$,最大値は$\displaystyle \frac{[ケ]}{[コ]}$である.

(3)循環小数$0. \dot{2}01 \dot{4}$を分数で表すと,
\[ 0. \dot{2}01 \dot{4}=\frac{\kakkofour{サ}{シ}{ス}{セ}}{\kakkofour{ソ}{タ}{チ}{ツ}} \]
となる.
(4)平面上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とすると,$|\overrightarrow{\mathrm{AP}}|=2 |\overrightarrow{\mathrm{BP}}|$を満たす点$\mathrm{P}$の軌跡は,
\[ \overrightarrow{\mathrm{MO}}=\frac{[テ]}{[ト]} \overrightarrow{\mathrm{MA}} \]
を満たす点$\mathrm{O}$を中心とする半径
\[ \frac{[ナ]}{[ニ]} |\overrightarrow{\mathrm{MA}}| \]
の円である.
(5)同じ大きさの赤玉と白玉が何個か袋に入っている.よくかきまぜた後,この袋の中から同時に$2$個の玉を取り出したとき,$2$個とも赤の確率を$p$,$2$個のうち$1$個が赤,$1$個が白の確率を$q$,$2$個とも白の確率を$r$と書くとすると,それらの比例関係は次のようになった.
\[ p:q:r=14:20:5 \]
この袋の中の赤玉の個数は$[ヌ]$,白玉の個数は$[ネ]$である.
(6)$a,\ b,\ c$は次の方程式を満たす整数とする.
\[ a \log_{10} \frac{5}{6}+b \log_{10} 15+c \log_{10} \frac{10}{9}=\log_{10} 5000 \]
このとき,$a=[ノ]$,$b=[ハ]$,$c=[ヒ]$である.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x=3+\sqrt{5}$,$y=3-\sqrt{5}$のとき,$4x^2+3xy+4y^2=[ア]$,$\displaystyle \frac{y}{x}+\frac{x}{y}=[イ]$である.
(2)関数$f(x)=-x^2+8x+c (2 \leqq x \leqq 5)$の最小値が$1$のとき,$c=[ウ]$である.また,そのときの$f(x)$の最大値は$[エ]$である.
(3)放物線$C_1:y=(x-p)^2+q$が放物線$C_2:y=-x^2$に接するとき,$p,\ q$の満たす条件は$[オ]$である.これより,$p$がすべての実数値をとって変わるとき,$C_1$の頂点が描く軌跡は放物線であり,その方程式は$[カ]$である.
(4)放物線$C:y=x^2+x$と直線$\ell_1:y=-x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C$と$\ell_1$によって囲まれた部分の面積を$S_1$とし,$C$,$\ell_1$および直線$\ell_2:x=-4$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。