タグ「軌跡」の検索結果

21ページ目:全221問中201問~210問を表示)
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
点$\mathrm{O}$を中心とする半径$r$の円の内部にある点を$\mathrm{A}$とする.この円周上の点$\mathrm{P}$について,線分$\mathrm{AP}$の垂直二等分線と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.点$\mathrm{P}$がこの円周上を動くとき,点$\mathrm{Q}$が描く軌跡を求めよ.
島根県立大学 公立 島根県立大学 2011年 第4問
次の問いに答えよ.

(1)次の$3$点$(-2,\ 16)$,$(1,\ 1)$,$(5,\ 9)$を通る放物線$C$をグラフとする$2$次関数を求めよ.
(2)点$\mathrm{A}(4,\ 0)$と放物線$C$上を動く点$\mathrm{P}$がある.このとき,線分$\mathrm{AP}$を$2:1$に外分する点$\mathrm{Q}$の軌跡の方程式を求めよ.
(3)点$\mathrm{Q}$の軌跡が描く曲線$D$と放物線$C$で囲まれる部分の面積を求めよ.
筑波大学 国立 筑波大学 2010年 第6問
直線$\ell:mx+ny=1$が,楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \ (a>b>0)$に接しながら動くとする.

(1)点$(m,\ n)$の軌跡は楕円になることを示せ.
(2)$C$の焦点$F_1(-\sqrt{a^2-b^2},\ 0)$と$\ell$との距離を$d_1$とし,もう1つの焦点$F_2(\sqrt{a^2-b^2},\ 0)$と$\ell$との距離を$d_2$とする.このとき$d_1d_2=b^2$を示せ.
愛媛大学 国立 愛媛大学 2010年 第2問
直線$y=a(x+2)$と円$x^2+y^2-4x=0$は異なる2点P,Qで交わっているとする.また,線分PQの中点をRとする.

(1)定数$a$の値の範囲を求めよ.
(2)Rの座標を$a$を用いて表せ.
(3)原点Oと点Rの距離を求めよ.
(4)$a$の値が(1)で求めた範囲を動くとき,点Rの軌跡を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第1問
一辺の長さが$2s$である正三角形$\mathrm{ABC}$の3つの頂点を$\mathrm{A}(-s,\ 0)$,$\mathrm{B}(s,\ 0)$,C$(0,\ \sqrt{3}s)$とする.$\mathrm{AP}^2+\mathrm{BP}^2+\mathrm{CP}^2=t$であるような点$\mathrm{P}$について,以下の問いに答えよ.

(1)このような点$\mathrm{P}$が存在するための$s,\ t$についての必要十分条件と,この条件の下での点$\mathrm{P}$の軌跡の方程式を求めよ.
(2)点$\mathrm{P}$の軌跡が頂点$\mathrm{A}$を通る場合の$s$と$t$の関係式を求めよ.またこのときの点$\mathrm{P}$の軌跡を$\triangle \mathrm{ABC}$とともに図示せよ.
高知大学 国立 高知大学 2010年 第4問
$xy$平面上の原点を中心として半径1の円$C$を考える.$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とし,$C$上の点$(\cos \theta,\ \sin \theta)$をPとする.Pで$C$に接し,さらに$y$軸と接する円でその中心が円$C$の内部にあるものを$S$とし,その中心Qの座標を$(u,\ v)$とする.このとき,次の問いに答えよ.

(1)$u$と$v$をそれぞれ$\cos \theta$と$\sin \theta$を用いて表せ.
(2)$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$としたとき,点Qの軌跡の式を求めよ.さらに,その軌跡を図示せよ.
(3)円$S$の面積を$D(\theta)$とするとき,次の値を求めよ.
\[ \lim_{\theta \to \frac{\pi}{2}} \frac{D(\theta)}{\left( \displaystyle \frac{\pi}{2}-\theta \right)^2} \]
九州工業大学 国立 九州工業大学 2010年 第2問
Oを原点とする座標空間の2点A$(0,\ 0,\ 2)$,P$(\cos \theta,\ 2+\sin \theta,\ 1)$に対して,直線AP上の点で原点Oから最も近い点をQ$(X,\ Y,\ Z)$とする.$0 \leqq \theta \leqq 2\pi$として,次に答えよ.

(1)$X,\ Y,\ Z$を$\theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0,\ \pi,\ \frac{3}{2}\pi$のときの点Qの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とする.$0 \leqq \theta \leqq 2\pi$のとき,$\overrightarrow{\mathrm{OQ}}=s\overrightarrow{a}+t\overrightarrow{b}+u\overrightarrow{c}$をみたす実数$s,\ t,\ u$を$\theta$を用いて表せ.また,$s+t+u$の値を求めよ.
(3)点Qから$xy$平面にひいた垂線と$xy$平面の交点をR$(X,\ Y,\ 0)$とする.$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,$xy$平面における点Rの軌跡を求めよ.
山形大学 国立 山形大学 2010年 第2問
$xy$平面上に直線$\ell:y=x+2$と曲線$C:y=1-x^2$がある.直線$\ell$上を動く点Pから曲線$C$に異なる2本の接線を引き,接点をQ,Rとする.線分QRの中点をMとするとき,次の問いに答えよ.

(1)点Pの$x$座標を$t$とし,2点Q,Rの$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta=2t$および$\alpha\beta=-(t+1)$を示せ.
(2)点Mの軌跡は曲線$y=-2x^2-x$であることを示せ.
(3)点Mの軌跡と$x$軸で囲まれた図形の面積を求めよ.
山形大学 国立 山形大学 2010年 第1問
$k$を定数とする.$2$次関数$\displaystyle y=2x^2+kx-\frac{k}{2} \ \cdots\cdots①$について,次の問に答えよ.

(1)グラフの頂点の座標を$k$を用いて表せ.
(2)$k$を動かすとき,頂点の軌跡を求めよ.
(3)箱の中に$1$から$12$までの数字が$1$つずつ書かれた$12$枚のカードが入っている.その中から$3$枚のカードを同時に取り出す.このとき,次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $2$けたの数字が書かれたカードの枚数が$0$,$1$,$2$,$3$となる確率をそれぞれ求めよ.
(ii) $2$けたの数字が書かれたカードの枚数を$k$とするとき,$2$次関数$①$の最小値が$-1$以下になる確率を求めよ.
秋田大学 国立 秋田大学 2010年 第3問
$xy$平面上の放物線$C:y=x^2-3x$と,点P$(1,\ -6)$に対して,次の問いに答えよ.

(1)Pを通って放物線$C$に接する直線の方程式を求めよ.
(2)放物線$C$と(1)の直線との接点のうち$x$座標が負のものをQ,正のものをRとする.Sは直線QR上にありQと異なる点とする.Sの$x$座標を$t$とし,P,Q,Sの3点を通る円の方程式を$x^2+y^2+lx+my+n=0$とするとき,$l,\ m,\ n$をそれぞれ$t$の式で表せ.
(3)(2)の円の中心の軌跡を求めよ.さらに,(2)の円の半径が最小となる$t$の値を求めよ.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。