タグ「軌跡」の検索結果

11ページ目:全221問中101問~110問を表示)
群馬大学 国立 群馬大学 2013年 第16問
座標平面上に原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2 \sqrt{2},\ 0)$がある.$0<t<1$のとき,線分$\mathrm{AO}$,$\mathrm{OB}$を$t:1-t$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とする.また,$t=0$,$t=1$のとき,$\mathrm{R}$はそれぞれ$\mathrm{A}$,$\mathrm{B}$に一致するものとし,$t$を$0 \leqq t \leqq 1$の範囲で動かしたときの$\mathrm{R}$の軌跡を$C$とする.

(1)$C$を媒介変数$t$を用いて表せ.
(2)点$\mathrm{R}$と原点$\mathrm{O}$の距離の最小値を求めよ.
(3)$C$と線分$\mathrm{AB}$で囲まれた部分の面積$S$を求めよ.
岐阜大学 国立 岐阜大学 2013年 第2問
$xy$平面上に中心$(1,\ 0)$,半径$2$の円$C$がある.円$C$と$y$軸との交点のうち,$y$座標が負である点を$\mathrm{P}$とする.以下の問に答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{Q}$が円$C$の周から点$\mathrm{P}$を除いた部分を動くとき,線分$\mathrm{PQ}$の中点$\mathrm{R}$の軌跡を求めよ.
(3)点$\mathrm{Q}$は円$C$の周から点$\mathrm{P}$を除いた部分を動くとする.また,$k$を$1$以外の正の実数とし,線分$\mathrm{PQ}$を$k:1$に外分する点を$\mathrm{S}$とする.このとき点$\mathrm{S}$の軌跡を求めよ.
(4)$k=3$のとき,直線$\displaystyle y=x+a+\frac{\sqrt{3}}{2}$が(3)で求めた軌跡と共有点をもつような$a$の値の範囲を求めよ.
宮崎大学 国立 宮崎大学 2013年 第2問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
東京海洋大学 国立 東京海洋大学 2013年 第4問
座標平面上に$2$点$\mathrm{A}(t,\ t)$,$\mathrm{B}(t-1,\ -t+1)$をとり,線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$とする.

(1)$t$がすべての実数を動くとき,点$\mathrm{P}$の軌跡を求めよ.
(2)直線$\mathrm{AB}$の方程式を$t$を用いて表せ.
(3)$(2)$で求めた方程式を満たす実数$t$が存在するための$x,\ y$についての条件を求め,条件を満たす点$(x,\ y)$全体の領域$D$を座標平面内に図示せよ.
(4)$(1)$で求めた点$\mathrm{P}$の軌跡の方程式を$y=f(x)$とする.連立不等式
\[ y \geqq x,\quad y \geqq -x,\quad y \leqq 1,\quad y \geqq f(x) \]
の表す領域と領域$D$の共通部分の面積を求めよ.
京都教育大学 国立 京都教育大学 2013年 第3問
円$x^2+y^2=1$を$C$とし,点$(0,\ 2)$を通り傾き$a$の直線を$L$とする.次の問に答えよ.

(1)$L$と$C$が異なる$2$つの交点を持つような$a$の条件を求めよ.
(2)$L$と$C$が異なる$2$つの交点を持つとき,それら$2$交点の中点の軌跡を含む円の方程式を求めよ.
和歌山大学 国立 和歌山大学 2013年 第3問
$a$を正の定数とする.次の方程式で表される円$C_1$と放物線$C_2$がある.
\[ C_1:(x-2a)^2+y^2=a^2,\quad C_2:y=\frac{2}{5a^2}x^2+1 \]
$C_1$の中心を$\mathrm{P}$,$C_2$の頂点を$\mathrm{Q}$とし,$\mathrm{PR}^2-\mathrm{QR}^2=a^2-1$を満たす点$\mathrm{R}$の軌跡を$C_3$とする.このとき,次の問いに答えよ.

(1)$C_3$を表す方程式を求めよ.
(2)$C_1$と$C_3$が共有点をもつとき,$C_2$と$C_3$は共有点をもたないことを示せ.
宮崎大学 国立 宮崎大学 2013年 第4問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
名城大学 私立 名城大学 2013年 第3問
$2$次正方行列$A_0,\ B$を
\[ A_0=\left( \begin{array}{cc}
1 & 1 \\
1 & 2
\end{array} \right),\quad B=\left( \begin{array}{cc}
1 & -1 \\
1 & 0
\end{array} \right) \]
とおく.$2$次正方行列$A_1,\ A_2,\ \cdots$を$A_{n+1}=BA_n+A_0 (n=0,\ 1,\ 2,\ \cdots)$で定める.

(1)$A=BA+A_0$を満たす$2$次正方行列$A$を求めよ.
(2)$B^2,\ B^3$を求めよ.
(3)$A_{15}$の表す$1$次変換を$f$とし,点$\mathrm{P}(-2t+3,\ t)$を$f$で移した点を$\mathrm{Q}$とする.$t$が実数全体を動くとき,$\mathrm{Q}$の軌跡の方程式を求めよ.
名城大学 私立 名城大学 2013年 第3問
$0 \leqq k \leqq 1$のとき,直線$x-2+ky=0$と直線$-k(x+2)+y=0$について,次の各問に答えよ.

(1)$2$つの直線の交点$\mathrm{P}(x,\ y)$の座標を$k$を用いて表せ.
(2)点$\mathrm{P}$の$x$座標の動く範囲を求めよ.
(3)点$\mathrm{P}$の軌跡を求め,図示せよ.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{2}+1}{\sqrt{2}-1},\ y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$のとき,$x^2+y^2=[ア]$,$x^3+y^3=[イ]$である.
(2)放物線$y=x^2-2x+3$を$x$軸方向に$[ウ]$,$y$軸方向に$[エ]$だけ平行移動すると,放物線$y=x^2+4x+3$が得られる.
(3)$xy$平面上に,$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 0)$を端点とする線分$\mathrm{OA}$と点$\mathrm{P}$がある.$\mathrm{P}$が$\mathrm{OP}:\mathrm{AP}=1:1$を満たしながら動くとき,$\mathrm{P}$の描く軌跡は直線であり,その方程式は$[オ]$である.また,$\mathrm{P}$が$\mathrm{OP}:\mathrm{AP}=1:2$を満たしながら動くとき,$\mathrm{P}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_1:y=x^2+2x$と放物線$C_2:y=-2x^2-10x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C_1$と$C_2$によって囲まれた部分の面積を$S_1$とし,$C_1$,$C_2$および直線$\ell:x=-5$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。