タグ「軌跡」の検索結果

10ページ目:全221問中91問~100問を表示)
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が2である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)円$\displaystyle x^2+y^2=\frac{9}{4}$と$C$の交点の$x$座標をすべて求めよ.さらに,交点の個数を求めよ.
千葉大学 国立 千葉大学 2013年 第8問
$r$を$1$より大きい実数とする.半径$1$の円$C$の周上に点$\mathrm{Q}$をとる.最初に円$C$の中心$\mathrm{P}$は座標平面の$(0,\ 1)$,点$\mathrm{Q}$は$(0,\ 2)$にあるものとし,円$C$が$x$軸に接しながら$x$軸の正の方向にすべることなく転がっていく.角$\theta$ラジアンだけ回転したとき,半直線$\mathrm{PQ}$上に$\mathrm{PR}=r$となる点$\mathrm{R}$をとる.$\theta$を$0$から$2\pi$まで動かしたときの$\mathrm{R}$の軌跡を考える.

(1)$\alpha,\ \beta$は$0 \leqq \alpha<\beta \leqq 2\pi$をみたし,$\theta=\alpha$のときの$\mathrm{R}$の座標と$\theta=\beta$のときの$\mathrm{R}$の座標とが一致するものとする.$\displaystyle t=\frac{\beta-\alpha}{2}$とおくとき,$r$を$t$を用いて表せ.
(2)(1)において,$\theta$を$\alpha$から$\beta$まで動かしたときの$\mathrm{R}$の軌跡によって囲まれた図形の面積を$S$とする.$S$を$t$を用いて表せ.
(3)$\displaystyle \lim_{r \to \infty} \frac{S}{r^2}$を求めよ.
高知大学 国立 高知大学 2013年 第1問
座標平面において,点$(0,\ 5)$を通り,直線$y=x$と点$(a,\ a)$で接する円$C$について,次の問いに答えよ.

(1)点$(0,\ 5)$と直線$y=x$と点$(a,\ a)$がかかれているとき,コンパスと目盛りのない定規を用いて,円$C$を作図する手順を説明せよ.
(2)円$C$の方程式を求めよ.
(3)円$C$の中心の座標を$(s,\ t)$とするとき,$\displaystyle x=\frac{\sqrt{2}}{2}(s+t)$,$\displaystyle y=\frac{\sqrt{2}}{2}(-s+t)$とおく.このとき,$a$の値が変化するときの点$(x,\ y)$の軌跡を座標平面に図示せよ.
東京学芸大学 国立 東京学芸大学 2013年 第2問
座標平面上に,点$\mathrm{A}(0,\ -2)$と円$C:x^2+(y-2)^2=4$がある.円$C$上の点$\mathrm{P}$に対し,線分$\mathrm{AP}$の中点を$\mathrm{M}$,$\mathrm{M}$を通り$\mathrm{AP}$に垂直な直線を$\ell$とする.下の問いに答えよ.

(1)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{M}$の軌跡を求めよ.
(2)直線$\ell$が円$C$に接するとき,点$\mathrm{M}$の座標を求めよ.
(3)点$\mathrm{P}$が円$C$上を動くとき,直線$\ell$が通る点全体の領域を求め,図示せよ.
電気通信大学 国立 電気通信大学 2013年 第4問
座標平面上の$2$つの直線$\ell,\ m$を,それぞれ
\[ \ell:y=\frac{1}{\sqrt{3}}x,\quad m:y=-\frac{1}{\sqrt{3}}x \]
とし,$\ell$上に点$\mathrm{A}(\sqrt{3}s,\ s)$を,$m$上に点$\mathrm{B}(\sqrt{3}t,\ -t)$をとる. \\
ただし,$s>0$,$t>0$とする.さらに,正三角形$\mathrm{ABC}$を,頂点$\mathrm{C}$が直線$\mathrm{AB}$に関して原点$\mathrm{O}$と同じ側になるように定める.このとき,以下の問いに答えよ.
\img{178_2358_2013_1}{50}


(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一円周上にあることを示し,点$\mathrm{C}$が$y$軸上にあることを証明せよ.
(2)点$\mathrm{C}$の$y$座標を$s,\ t$の式で表せ.
(3)点$\mathrm{D}(X,\ Y)$を,直線$\mathrm{AB}$に関して点$\mathrm{C}$と対称な点とする.このとき,$X$と$Y$をそれぞれ$s,\ t$の式で表せ.
(4)線分$\mathrm{AB}$の長さを$s,\ t$の式で表せ.
(5)点$\mathrm{A}$,$\mathrm{B}$が線分$\mathrm{AB}$の長さを$\sqrt{3}$に保ちながら動くとき,点$\mathrm{D}$の軌跡を求め,その概形を図示せよ.
和歌山大学 国立 和歌山大学 2013年 第3問
$a$を正の定数とする.次の方程式で表される円$C_1$と放物線$C_2$がある.
\[ C_1:(x-2a)^2+y^2=a^2,\quad C_2:y=\frac{2}{5a^2}x^2+1 \]
$C_1$の中心を$\mathrm{P}$,$C_2$の頂点を$\mathrm{Q}$とし,$\mathrm{PR}^2-\mathrm{QR}^2=a^2-1$を満たす点$\mathrm{R}$の軌跡を$C_3$とする.このとき,次の問いに答えよ.

(1)$C_3$を表す方程式を求めよ.
(2)$C_1$と$C_3$が共有点をもつとき,$C_2$と$C_3$は共有点をもたないことを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の円$x^2+y^2-10x-10y+49=0$を$C$とする.原点$\mathrm{O}$を通り,円$C$に接する直線のうち,傾きの大きい方を$\ell$とする.

(1)$\ell$の傾きを求めよ.
(2)$x$軸に接し,円$C$と外接するような円の中心$\mathrm{P}$の描く軌跡を求めよ.
(3)直線$\ell$と$x$軸に接し,さらに円$C$と外接する円の半径をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第6問
$xy$平面において,点$\mathrm{F}(p,\ 0)$と$y$軸から等距離にある点の軌跡を$C$とする.ただし$p>0$とする.次の各問いに答えよ.

(1)$C$を表す方程式を求めよ.
(2)$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線$\ell$の方程式を求めよ.ただし$y_0 \neq 0$とする.
(3)(2)の$\ell$と$x$軸の交点を$\mathrm{Q}$とするとき,$\mathrm{FP}=\mathrm{FQ}$であることを証明せよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
群馬大学 国立 群馬大学 2013年 第15問
原点$\mathrm{O}$を中心とする半径$2$の円を$\mathrm{A}$とする.半径$1$の円(以下,「動円」と呼ぶ)は,円$\mathrm{A}$に外接しながら,すべることなく転がる.ただし,動円の中心は円$\mathrm{A}$の中心に関し反時計回りに動く.動円上の点$\mathrm{P}$の始めの位置を$(2,\ 0)$とする.動円の中心と原点を結ぶ線分が$x$軸の正方向となす角を$\theta$として,$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かしたときの$\mathrm{P}$の軌跡を$C$とする.
(図は省略)

(1)$C$を媒介変数$\theta$を用いて表せ.
(2)$\mathrm{P}$の$y$座標が$\displaystyle \frac{1}{2}$のとき,$\mathrm{P}$での$C$の接線の傾きを求めよ.
(3)$C$の長さを求めよ.ただし,曲線$x=f(\theta),\ y=g(\theta) \ (\alpha \leqq \theta \leqq \beta)$の長さは \\
$\displaystyle \int_\alpha^\beta \sqrt{\left( \frac{dx}{d\theta} \right)^2+\left( \frac{dy}{d\theta} \right)^2} \, d\theta$で与えられる.
スポンサーリンク

「軌跡」とは・・・

 まだこのタグの説明は執筆されていません。