タグ「距離」の検索結果

7ページ目:全233問中61問~70問を表示)
名古屋大学 国立 名古屋大学 2014年 第1問
空間内にある半径$1$の球(内部を含む)を$B$とする.直線$\ell$と$B$が交わっており,その交わりは長さ$\sqrt{3}$の線分である.

(1)$B$の中心と$\ell$との距離を求めよ.
(2)$\ell$のまわりに$B$を$1$回転してできる立体の体積を求めよ.
埼玉大学 国立 埼玉大学 2014年 第3問
$\displaystyle f(x)=x^3-\frac{1}{2}x$とする.曲線$C:y=f(x)$上に$2$点$\mathrm{P}(t,\ f(t))$,$\mathrm{Q}(-t,\ f(-t))$ $(t>0)$をとり,点$\mathrm{P}$における接線と法線,および,点$\mathrm{Q}$における接線と法線によって囲まれる図形を$A$とする.

(1)点$\mathrm{P}$における接線を$\ell_1$,法線を$\ell_2$とし,原点$(0,\ 0)$と$\ell_1$,$\ell_2$との距離をそれぞれ$d_1,\ d_2$とおく.$d_1,\ d_2$を$t$を用いて表せ.
(2)$(1)$で定めた$d_1,\ d_2$に対し,$d_1=d_2$となるような$t$の値をすべて求めよ.
(3)$(2)$で求めたそれぞれの$t$の値に対し,図形$A$の面積を求めよ.
金沢大学 国立 金沢大学 2014年 第1問
$a$を実数とする.このとき,座標空間内の球面$S:x^2+y^2+z^2=1$と直線$\ell:(x,\ y,\ z)=(2,\ -1,\ 0)+t(-1,\ a,\ a)$について,次の問いに答えよ.

(1)$S$と$\ell$が異なる$2$点で交わるような$a$の値の範囲を求めよ.
(2)$a$の値が$(1)$で求めた範囲にあるとき,$S$と$\ell$の$2$つの交点の間の距離$d$を$a$を用いて表せ.
(3)$(2)$の$d$が最大となるような実数$a$の値とそのときの$d$を求めよ.
徳島大学 国立 徳島大学 2014年 第4問
$x_0=1$,$y_0=0$とする.$n$が自然数のとき,座標平面上の点$\mathrm{P}_{n-1}(x_{n-1},\ y_{n-1})$は行列$\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & -\displaystyle\frac{2}{3} \\
\displaystyle\frac{2}{3} & \displaystyle\frac{1}{2}
\end{array} \right)$の表す$1$次変換によって点$\mathrm{P}_n(x_n,\ y_n)$に移されるとする.点$\mathrm{P}_{n-1}$と点$\mathrm{P}_n$の距離を$l_n$とする.
(図は省略)

(1)$l_1$を求めよ.
(2)$l_n$を$x_{n-1},\ y_{n-1}$の式で表せ.
(3)$\displaystyle \frac{l_{n+1}}{l_n}$の値を求めよ.
(4)無限級数$\displaystyle \sum_{n=1}^\infty l_n$の和を求めよ.
群馬大学 国立 群馬大学 2014年 第3問
$a,\ b$は実数で$a>0$,$b>1$とする.放物線$y=ax^2+1$と直線$y=b$との交点で第$1$象限にあるものを$\mathrm{P}_1$とし,放物線$\displaystyle y=\frac{1}{2}x^2$と直線$y=b$の交点で第$1$象限にあるものを$\mathrm{P}_2$とする.$\mathrm{P}_1$と$\mathrm{P}_2$の間の距離を$d$とするとき,以下の問いに答えよ.

(1)$\displaystyle a=\frac{1}{2}$のとき,$d \leqq 1$であるための$b$の値の範囲を求めよ.
(2)$\displaystyle a \neq \frac{1}{2}$のとき,$d \leqq 1$であるための$b$の値の範囲を$a$を用いて表せ.
室蘭工業大学 国立 室蘭工業大学 2014年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$,$g(x)$をそれぞれ
\[ f(x)=ax^2+bx+c,\quad g(x)=f^\prime(x) \]
と定め,放物線$y=f(x)$および直線$y=g(x)$をそれぞれ$C$,$L$とする.$C$の軸は$x=1$であり,$C$と$L$はともに点$(2,\ 2)$を通る.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C$を$y$軸方向に$d$だけ平行移動させた曲線を$D$とする.$D$は$L$と$2$点で交わり,その$2$点間の距離は$4 \sqrt{5}$である.この$2$点の座標,および$d$の値を求めよ.
(3)$L$と$D$で囲まれた部分の面積$S$を求めよ.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
鳥取大学 国立 鳥取大学 2014年 第2問
実数$a,\ b,\ \theta$に対して,行列$A,\ R$を以下のように定める.
\[ A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right),\quad R=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
また$xy$平面内の相異なる$2$点$\mathrm{P}_0(p_x,\ p_y)$および$\mathrm{Q}_0(q_x,\ q_y)$を考える.$0$以上の整数$n$に対し,行列$A^n$の表す$1$次変換による点$\mathrm{P}_0$,$\mathrm{Q}_0$の像をそれぞれ$\mathrm{P}_n$,$\mathrm{Q}_n$とし,$2$点$\mathrm{P}_n$,$\mathrm{Q}_n$間の距離を$D_n$とする.ただし$A^0$は単位行列とする.

(1)$D_0$を$p_x,\ p_y,\ q_x,\ q_y$を用いて表せ.
(2)正の実数$s$に対して,$sR=A$が成り立つとき,$s$を$a,\ b$を用いて表せ.
(3)$D_n$と$D_0$の比$\displaystyle \frac{D_n}{D_0}$を$a,\ b$を用いて表せ.
鳥取大学 国立 鳥取大学 2014年 第2問
実数$a,\ b,\ \theta$に対して,行列$A,\ R$を以下のように定める.
\[ A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right),\quad R=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
また$xy$平面内の相異なる$2$点$\mathrm{P}_0(p_x,\ p_y)$および$\mathrm{Q}_0(q_x,\ q_y)$を考える.$0$以上の整数$n$に対し,行列$A^n$の表す$1$次変換による点$\mathrm{P}_0$,$\mathrm{Q}_0$の像をそれぞれ$\mathrm{P}_n$,$\mathrm{Q}_n$とし,$2$点$\mathrm{P}_n$,$\mathrm{Q}_n$間の距離を$D_n$とする.ただし$A^0$は単位行列とする.

(1)$D_0$を$p_x,\ p_y,\ q_x,\ q_y$を用いて表せ.
(2)正の実数$s$に対して,$sR=A$が成り立つとき,$s$を$a,\ b$を用いて表せ.
(3)$D_n$と$D_0$の比$\displaystyle \frac{D_n}{D_0}$を$a,\ b$を用いて表せ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。